Skip to main content

Bayesian Analysis of Curves Shape Variation Through Registration and Regression

  • Chapter
Nonparametric Bayesian Inference in Biostatistics

Part of the book series: Frontiers in Probability and the Statistical Sciences ((FROPROSTAS))

Abstract

Misalignment of functional features in a sample of random curves leads to potentially misleading inference, when variation in timing is ignored. This chapter reviews the use of Bayesian hierarchical curve registration in Biostatistics and Bioinformatics. Several models allowing for unit-specific random time scales are discussed and applied to longitudinal data arising in biomedicine, pharmacokinetics, and time-course genomics. We consider representations of random functionals based on P-spline priors. Under this framework, straightforward posterior simulation strategies are outlined for inference. Beyond curve registration, we discuss joint regression modeling of both random effects and population level functional quantities. Finally, the use of mixture priors is discussed in the setting of differential expression analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In our development, X ∼ Ga(a; b) is parametrized so that \(E[X] = a/b\).

References

  • Albert, J. and Chib, S. (1993). Bayesian analysis of binary and polychotomous response data. Journal of the American Statistical Association, 88, 669–679.

    Article  MathSciNet  MATH  Google Scholar 

  • Baladandayuthapani, V., Mallick, B. K., and Carroll, R. J. (2005). Spatially adaptive Bayesian penalized regression splines (P-splines). Journal of Computational and Graphical Statistics, 14(2), 378–394.

    Article  MathSciNet  Google Scholar 

  • Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57, 289–300.

    MathSciNet  MATH  Google Scholar 

  • Brumback, L. C. and Lindstrom, M. J. (2004). Self modeling with flexible, random time transformations. Biometrics, 60(2), 461–470.

    Article  MathSciNet  MATH  Google Scholar 

  • Cheng, W., Dryden, I., and Huang, X. (2013). Bayesian registrations of functions and curves. eprint arXiv:1311.2105.

    Google Scholar 

  • De Boor, C. (1978). A Practical Guide to Splines. Berlin: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Della Gatta, G., Bansal, M., Ambesi-Impiombato, A., Antonini, D., Missero, C., and di Bernardo, D. (2008). Direct targets of the trp63 transcription factor revealed by a combination of gene expression profiling and reverse engineering. Genome Research, 18(6), 939–948.

    Article  Google Scholar 

  • Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with B-splines and penalties. Statistical Science, 11, 89–102.

    Article  MathSciNet  MATH  Google Scholar 

  • Erosheva, E. A., Matsueda, R. L., and Telesca, D. (2014). Breaking bad: Reviewing two decades of life course data analysis in criminology and beyond. Annual Reviews of Statistics and Its Applications, 1, 301–332.

    Article  Google Scholar 

  • Gasser, T. and Kneip, A. (1995). Searching for structure in curve samples. JASA, 90, 1179–1188.

    MATH  Google Scholar 

  • Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., and Rubin, D. (2013). Bayesian Data Analysis. Chapman & Hall / CRC, 3rd edition.

    Google Scholar 

  • Gervini, D. and Gasser, T. (2004). Self-modelling warping functions. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 66(4), 959–971.

    Article  MathSciNet  MATH  Google Scholar 

  • Guo, W. (2002). Functional mixed effects models. Biometrics, 58(1), 121–128.

    Article  MathSciNet  MATH  Google Scholar 

  • Hart, J. D. and Wehrly, T. E. (1986). Kernel regression estimation using repeated measurements data. Journal of the American Statistical Association, 81, 1080–1088.

    Article  MathSciNet  MATH  Google Scholar 

  • Hastie, T. and Tibshirani, R. (1993). Varying–coefficient models. Journal of the Royal Statistical Society, 55, 757–796.

    MathSciNet  MATH  Google Scholar 

  • Hastie, T., Tibshirani, R., and Friedman, J. H. (2001). The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer–Verlag Inc.

    Google Scholar 

  • Kneip, A. and Gasser, T. (1988). Convergence and consistency results for self-modeling nonlinear regression. The Annals of Statistics, 16, 82–112.

    Article  MathSciNet  MATH  Google Scholar 

  • Kneip, A. and Gasser, T. (1992). Statistical tools to analyze data representing a sample of curves. The Annals of Statistics, 20, 1266–1305.

    Article  MathSciNet  MATH  Google Scholar 

  • Kneip, A., Li, X., MacGibbon, K. B., and Ramsay, J. O. (2000). Curve registration by local regression. The Canadian Journal of Statistics / La Revue Canadienne de Statistique, 28(1), 19–29.

    Article  MathSciNet  MATH  Google Scholar 

  • Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38, 963–974.

    Article  MATH  Google Scholar 

  • Lang, S. and Brezger, A. (2004). Bayesian P-splines. Journal of Computational and Graphical Statistics, 13(1), 183–212.

    Article  MathSciNet  Google Scholar 

  • Leng, X. and Müller, H. (2006). Time ordering of gene co-expression. Biostatistics, 7.

    Google Scholar 

  • Liu, X. and Müller, H. (2004). Functional averaging and synchronization for time-warped random curves. Journal of the American Statistical Association, 99, 687–699.

    Article  MathSciNet  MATH  Google Scholar 

  • Morris, J. S. and Carroll, R. J. (2006). Wavelet-based functional mixed models. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 68(2), 179–199.

    Article  MathSciNet  MATH  Google Scholar 

  • Müller, P., Parmigiani, G., and Rice, K. (2006). Fdr and Bayesian multiple comparisons rules. Proceedings of the Valencia/ISBA 8th World Meeting on Bayesian Statistics (Oxford University Press).

    Google Scholar 

  • Parmigiani, G., Garrett, S. E., Anbashgahn, R., and Gabrielson, E. (2002). A statistical framework for expression-based molecular classification in cancer. Journal of The Royal Statistical Society, Series B, 64, 717–736.

    Article  MATH  Google Scholar 

  • Pinheiro, J. C. and Bates, D. M. (2000). Mixed–Effects Models in S and S–Plus. Springer–Verlag: New York.

    Book  Google Scholar 

  • Pound, C. R., Partin, A. W., Eisenberger, M. A., Chan, D. W., Pearson, J. D., and Walsh, P. C. (1999). Natural history of progression after psa elevation following radical prostatectomy. Journal of the American Medical Association, 281, 1591–1597.

    Article  MATH  Google Scholar 

  • Qian, J., Dolled-Filhart, M., Lin, J., Yu, H., and Gerstein, M. (2001). Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. Journal of Molecular Biology, 314, 1053–1066.

    Article  Google Scholar 

  • Ramsay, J. O. and Li, X. (1998). Curve registration. Journal of the Royal Statistical Society, Series B: Statistical Methodology, 60, 351–363.

    Article  MathSciNet  MATH  Google Scholar 

  • Rice, J. A. and Silverman, B. W. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves. Journal of the Royal Statistical Society, Series B: Methodological, 53, 233–243.

    MathSciNet  MATH  Google Scholar 

  • Ruppert, D., Wand, M., and Carroll, R. J. (2003). Semiparametric Regression. Cambridge University Press.

    Google Scholar 

  • Sakoe, H. and Chiba, S. (1978). Dynamic programming optimization for spoken word recognition. IEEE Transactions of Acoustic, Speech and Signal Processing, ASSP–26(1), 43–49.

    Google Scholar 

  • Shi, M., Weiss, R. E., and Taylor, J. M. G. (1996). An analysis of paediatric CD4 counts for acquired immune deficiency syndrome using flexible random curves. Applied Statistics, 45, 151–163.

    Article  MATH  Google Scholar 

  • Silverman, B. W. (1995). Incorporating parametric effects into functional principal components analysis. Journal of the Royal Statistical Society, Series B: Methodological, 57, 673–689.

    MathSciNet  MATH  Google Scholar 

  • Telesca, D. and Inoue, L. Y. T. (2008). Bayesian hierarchical curve registration. Journal of the American Statistical Association, 103 (481), 328–339.

    Article  MathSciNet  MATH  Google Scholar 

  • Telesca, D., Inoue, L. Y. T., Neira, M., Etzioni, R., Gleave, M., and Nelson, C. (2009). Differential expression and network inferences through functional data modeling. Biometrics, 65, 793–804.

    Article  MathSciNet  MATH  Google Scholar 

  • Telesca, D., Erosheva, E. A., Kreager, D. A., and Matsueda, R. L. (2012a). Modeling criminal careers as departures from a unimodal popolation age-crime curve: The case of marijuana use. JASA, 107(500), 1427–1440.

    Article  MathSciNet  MATH  Google Scholar 

  • Telesca, D. adn Muller, P., Parmigiani, G., and RS, F. (2012b). Modeling dependent gene expression. Annals of Applied Statistics, 6(2), 542–560.

    Google Scholar 

  • Tuddenham, R. D. and Snyder, M. M. (1954). Physical growth of Califorfornia boys and girls from birth to eighteen years. University of California Publications in Child Development, 1, 183–364.

    Google Scholar 

  • Verbyla, A. P., Arunas, P., Cullis, B. R., Kenward, M. G., and Welham, S. J. (1999). The analysis of designed experiments and longitudinal data by using smoothing splines. Journal of the Royal Statistical Society, Series C: Applied Statistics, 48, 269–300.

    Article  MATH  Google Scholar 

  • Wakefield, J. (2012). Bayesian and Frequentist regression methods. Springer.

    Google Scholar 

  • Wang, K. and Gasser, T. (1997). Alignment of curves by dynamic time warping. The Annals of Statistics, 25(3), 1251–1276.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, K. and Gasser, T. (1999). Synchronizing sample curves nonparametrically. The Annals of Statistics, 27(2), 439–460.

    Article  MathSciNet  MATH  Google Scholar 

  • Wypij, D., Pugh, M., and Ware, J. H. (1993). Modeling pulmonary function growth with regression splines. Statistica Sinica, 3, 329–350.

    MATH  Google Scholar 

  • Yao, F., Müller, H. J., and Wang, J. L. (2005). Functional data analysis of sparse longitudinal data. JASA, 100(470), 577–590.

    Article  MATH  Google Scholar 

  • Zeger, S. L. and Diggle, P. J. (1994). Semiparametric models for longitudinal data with application to CD4 cell numbers in HIV seroconverters. Biometrics, 50, 689–699.

    Article  MATH  Google Scholar 

  • Zhang, Y. and Telesca, D. (2014). Joint clustering and registration of functional data. Technical report, UCLA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donatello Telesca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Telesca, D. (2015). Bayesian Analysis of Curves Shape Variation Through Registration and Regression. In: Mitra, R., Müller, P. (eds) Nonparametric Bayesian Inference in Biostatistics. Frontiers in Probability and the Statistical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-19518-6_14

Download citation

Publish with us

Policies and ethics