Skip to main content

Neuronal Spike Train Analysis Using Gaussian Process Models

  • Chapter
Nonparametric Bayesian Inference in Biostatistics

Abstract

Statistical analysis of simultaneously recorded neurons plays an important role in understanding complex behaviors, decision making process, and neurophysiological disorders. Here, we briefly review several statistical methods specifically developed for analysis of neuronal spike trains. We then focus on application of Gaussian process models for estimating time-varying firing rates of neurons and show how this approach can be extended for modeling synchrony among multiple neurons. We finish this chapter by discussing some possible future directions where more advanced nonparametric Bayesian methods can be utilized to improve existing models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Their data model is somewhat different from (13.1), as the spike times are assumed to follow a conditionally inhomogeneous gamma-interval process instead of a Poisson process.

References

  • Alvarez, M. A., Rosasco, L., and Lawrence, N. D. (2011). Kernels for Vector-Valued functions: a review.

    Google Scholar 

  • Behseta, S. and Chenouri, S. (2011). Comparison of two population of curves with an application in neuronal data analysis. Statistics in Medicine, 30, 1441–1454.

    Article  MathSciNet  Google Scholar 

  • Behseta, S., Kass, R. E., and Wallstrom, G. L. (2005). Hierarchical models for assessing variability among functions. Biometrika, 92(2), 419–434.

    Article  MathSciNet  MATH  Google Scholar 

  • Behseta, S., Berdyyeva, T., Olson, C. R., and Kass, R. E. (2009). Bayesian correction for attenuation of correlation in Multi-Trial spike count data. Journal of Neurophysiology, pages 90727.2008+.

    Google Scholar 

  • Berkes, P., Wood, F., and Pillow, J. W. (2009). Characterizing neural dependencies with copula models. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 129–136. Curran Associates, Inc.

    Google Scholar 

  • Brillinger, D. R. (1988). Maximum likelihood analysis of spike trains of interacting nerve cells. Biological Cybernetics, 59, 189–200.

    Article  MATH  Google Scholar 

  • Brown, E. N., Kass, R. E., and Mitra, P. P. (2004). Multiple neural spike train data analysis: state-of-the-art and future challenges. Nature Neuroscience, 7(5), 456–461.

    Article  Google Scholar 

  • Buzsáki, G. (2010). Neural syntax: Cell assemblies, synapsembles, and readers. Neuron, 68(3), 362–385.

    Article  Google Scholar 

  • Chapin, J. (1999). Populatin-level analysis of multi-single neuron recording data: multivariate statistical methods. In Methods for Neural Ensemble Recordings, M. Nicolelis Editor, CRC Press: Boca Raton (FL).

    Google Scholar 

  • Cressie, N. (1993). Statistics for Spatial Data. Wiley, New York.

    Google Scholar 

  • Cribben, I., Wager, T., and Lindquist, M. (2013). Detecting functional connectivity change points for single-subject fmri data. Frontiers in Computational Neuroscience, 7(143).

    Google Scholar 

  • Cunningham, J. P., Yu, B. M., Shenoy, K. V., and Sahani, M. (2007). Inferring neural firing rates from spike trains using gaussian processes. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors, NIPS.

    Google Scholar 

  • Diekman, C. O., Sastry, P. S., and Unnikrishnan, K. P. (2009). Statistical significance of sequential firing patterns in multi-neuronal spike trains. Journal of neuroscience methods, 182(2), 279–284.

    Article  MATH  Google Scholar 

  • Dimatteo, I., Genovese, C. R., and Kass, R. E. (2001). Bayesian curve-fitting with free-knot splines. Biometrika, 88(4), 1055–1071.

    Article  MathSciNet  MATH  Google Scholar 

  • Duane, S., Kennedy, A., Pendleton, B. J., and Roweth, D. (1987). Hybrid Monte Carlo. Physics Letters B, 195(2), 216–222.

    Article  Google Scholar 

  • Farlie, D. J. G. (1960). The performance of some correlation coefficients for a general bivariate distribution. Biometrika, 47(3/4).

    Google Scholar 

  • Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., and Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. NeuroImage, 6(3), 218–229.

    Article  Google Scholar 

  • Gerstein, G. L. and Perkel, D. H. (1969). Simultaneously recorded trains of action potentials: Analysis and functional interpretation. Science, 164(3881), 828–830.

    Article  Google Scholar 

  • Gerstner, W. and Kistler, W. M. (2002). Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, 1 edition.

    Google Scholar 

  • Green, P. J. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82(4), 711–732.

    Article  MathSciNet  MATH  Google Scholar 

  • Grün, S., Diesmann, M., and Aertsen, A. (2002). Unitary events in multiple single-neuron spiking activity: I. detection and significance. Neural Computation, 14(1), 43–80.

    MATH  Google Scholar 

  • Gumbel, E. J. (1960). Bivariate exponential distributions. Journal of the American Statistical Association, 55, 698–707.

    Article  MathSciNet  MATH  Google Scholar 

  • Harrison, M. T., Amarasingham, A., and Kass, R. E. (2013). Statistical identification of synchronous spiking. In P. D. Lorenzo and J. Victor., editors, Spike Timing: Mechanisms and Function. Taylor and Francis.

    Google Scholar 

  • Tuckwell, H. C. (1989). Philadelphia, Pa. Society for Industrial and Applied Mathematics (SIAM).

    Google Scholar 

  • Holden, A. (1976). Models of the Stochastic Activity of Neurones. Springer Verlag.

    Google Scholar 

  • Holland, P. W., Laskey, K., and Leinhardt, S. (1983). Stochastic blockmodels: First steps. Social Networks, 5(2), 109–137.

    Article  MathSciNet  Google Scholar 

  • Kass, R. E., Ventura, V., and Brown, E. N. (2005). Statistical issues in the analysis of neuronal data. Journal of Neurophysiology, 94, 8–25.

    Article  Google Scholar 

  • Kelly, R. C. and Kass, R. E. (2012). A framework for evaluating pairwise and multiway synchrony among Stimulus-Driven neurons. Neural Computation, pages 1–26.

    Google Scholar 

  • Kottas, A. and Behseta, S. (2010). Bayesian nonparametric modeling for comparison of single-neuron firing intensities. Biometrics, pages 277–286.

    Google Scholar 

  • Kottas, A., Behseta, S., Moorman, D. E., Poynor, V., and Olson, C. R. (2012). Bayesian nonparametric analysis of neuronal intensity rates. Journal of Neuroscience Methods, 203(1).

    Google Scholar 

  • Lan, S., Zhou, B., and Shahbaba, B. ((2014)). Spherical Hamiltonian Monte Carlo for constrained target distributions. In Proceedings of the 31th International Conference on Machine Learning (ICML).

    Google Scholar 

  • Lindquist, M., Xu, Y., Nebel, M., and Caffo, B. (2014). Evaluating dynamic bivariate correlations in resting-state fMRI: A comparison study and a new approach. Neuroimage, 101, 531–546.

    Article  Google Scholar 

  • Matsuzaka, Y., Picard, N., and Strick, P. L. (2007). Skill representation in the primary motor cortex after long-term practice. Journal of neurophysiology, 97(2), 1819–1832.

    Article  Google Scholar 

  • Moorman, D. and Aston-Jones, G. (2014). Orbitofrontal cortical neurons encode expectation-driven initiation of reward-seeking. Journal of Neuroscience, 34(31), 10234–46.

    Article  Google Scholar 

  • Morgenstern, D. (1956). Einfache beispiele zweidimensionaler verteilungen. Mitteilungsblatt für Mathematische Statistik, 8, 234–235.

    MathSciNet  MATH  Google Scholar 

  • Motta, G. and Ombao, H. (2012). Evolutionary factor analysis of replicated time series. Biometrics, 68, 825–836.

    Article  MathSciNet  MATH  Google Scholar 

  • Müller, P. and Quintana, F. (2010). Random partition models with regression on covariates. J Stat Plan Inference, 140(10), 2801–2808.

    Article  MATH  Google Scholar 

  • Narayanan, N. S. and Laubach, M. (2009). Methods for studying functional interactions among neuronal populations. Methods in molecular biology, 489, 135–165.

    Article  Google Scholar 

  • Neal, R. M. (1998). Regression and classification using Gaussian process priors. Bayesian Statistics, 6, 471–501.

    Google Scholar 

  • Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In S. Brooks, A. Gelman, G. Jones, and X. L. Meng, editors, Handbook of Markov Chain Monte Carlo, pages 113–162. Chapman and Hall/CRC.

    Google Scholar 

  • Nelsen, R. B. (1998). An Introduction to Copulas (Lecture Notes in Statistics). Springer, 1 edition.

    Google Scholar 

  • Nicolelis, M. (1999). Methods for Neural Ensemble Recordings. CRC Press: Boca Raton (FL).

    Google Scholar 

  • Ombao, H. and Van Bellegem, S. (2008). Coherence analysis: A linear filtering point of view. IEEE Transactions on Signal Processing, 56, 2259–2266.

    Article  MathSciNet  Google Scholar 

  • Ombao, H., von Sachs, R., and Guo, W. (2005). Slex analysis of multivariate non-stationary time series. Journal of the American Statistical Association, 100, 519–531.

    Article  MathSciNet  MATH  Google Scholar 

  • Onken, A., Grünewälder, S., Munk, M., and Obermayer, K. (2009). Modeling short-term noise dependence of spike counts in macaque prefrontal cortex. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 1233–1240. Curran Associates, Inc.

    Google Scholar 

  • Park, T., Eckley, I., and Ombao, H. (2014). Estimating the time-evolving partial coherence between signals via multivariate locally stationary wavelet processes. IEEE Transactions on Signal Processing, accepted.

    Google Scholar 

  • Patnaik, D., Sastry, P., and Unnikrishnan, K. (2008). Inferring neuronal network connectivity from spike data: A temporal data mining approach. Scientific Programming, 16, 49–77.

    Article  Google Scholar 

  • Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E. J., and Simoncelli, E. P. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature, 454(7207), 995–9.

    Article  Google Scholar 

  • Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning. MIT Press, 2nd edition.

    Google Scholar 

  • Riccardi, L. (1977). Diffusion Processes and Related Topics in Biology. Springer Verlag.

    Google Scholar 

  • Rigat, F., de Gunst, M., and van Pelt, J. (2006). Bayesian modeling and analysis of spatio-temporal neuronal networks. Bayesian Analysis, pages 733–764.

    Google Scholar 

  • Rodriguez, A. (2012). Modeling the dynamics of social networks using Bayesian hierarchical blockmodels. Statistical Analysis and Data Mining, 5(3), 218–234.

    Article  MathSciNet  Google Scholar 

  • Sastry, P. S. and Unnikrishnan, K. P. (2010). Conditional probability-based significance tests for sequential patterns in multineuronal spike trains. Neural Comput., 22(4), 1025–1059.

    Article  MATH  Google Scholar 

  • Shahbaba, B., Zhou, B., Ombao, H., Moorman, D., and Behseta, S. (2014). A Semiparametric Bayesian Model for Detecting Synchrony Among Multiple Neurons. Neural Computation, 26(9), 2025–51.

    Article  MathSciNet  Google Scholar 

  • Stokes, M. G., Kusunoki, M., Sigala, N., Nili, H., Gaffan, D., and Duncan, J. (2013). Dynamic coding for cognitive control in prefrontal cortex. Neuron, 78(2), 364–375.

    Article  Google Scholar 

  • Teh, Y. W., Seeger, M., and Jordan, M. I. (2005). Semiparametric latent factor models. In Proceedings of the International Workshop on Artificial Intelligence and Statistics, volume 10.

    Google Scholar 

  • Tuckwell, H. (1988). Introduction to Theoretical Neurobiology: Volume 1, Linear Cable Theory and Dendritic Structure. Cambridge University Press.

    Google Scholar 

  • Vandenberg-Rodes, A. and Shahbaba, B. (2015). Dependent Matérn Processes for Multivariate Time Series.

    Google Scholar 

  • Ventura, V., Cai, C., and Kass, R. E. (2005). Statistical assessment of time-varying dependency between two neurons. J Neurophysiol, 94(4), 2940–7.

    Article  Google Scholar 

  • West, M. (2007). Hierarchical mixture models in neurological transmission analysis. Journal of the American Statistical Association, 92, 587–606.

    Article  Google Scholar 

  • Wilson, A. G. and Ghahramani, Z. (2012). Modelling input dependent correlations between multiple responses. In N. C. P. Flach, T. De Bie, editor, Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD), Bristol, UK. Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Shahbaba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shahbaba, B., Behseta, S., Vandenberg-Rodes, A. (2015). Neuronal Spike Train Analysis Using Gaussian Process Models. In: Mitra, R., Müller, P. (eds) Nonparametric Bayesian Inference in Biostatistics. Frontiers in Probability and the Statistical Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-19518-6_13

Download citation

Publish with us

Policies and ethics