Skip to main content

How to Order the Alternatives, Rules, and the Rules to Choose Rules: When the Endogenous Procedural Choice Regresses

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 218))

Abstract

A procedural choice problem occurs when there is no ex ante agreement on how to choose a decision rule nor an exogenous authority that is strong enough to single out a decision rule in a group. In this paper, we define the manner of procedural selection as a relation-valued procedural choice rule (PCR). Based on this definition, we then argue for some necessary conditions of a PCR. One of the main findings centers on the notion of consistency, which demands concordance between judged-better procedures and judged-better outcomes. Specifically, we found that the consistency principle and a modified version of the Pareto principle yield a simple impossibility result. We then show how the weakening of these conditions results to a degenerate PCR or the existence of a procedural veto. Finally, we show that the restriction of the preference domain to an extreme consequentialism can be seen as a positive result.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The manners to induce the preference over the power set, including optimistic manner, are very well studied in the strategy proof social choice rules, see [10] and [11].

References

  1. Dyer, J.S., Miles Jr., F.: An actual application of collective choice theory to the selection of trajectories for the Mariner Jupiter/Saturn 1977 project. Oper. Res. 24(2), 220–244 (1976)

    Article  Google Scholar 

  2. Koray, S.: Self-selective social choice functions verify arrow and Gibbard-Satterthwaite theorems. Econometrica 68(4), 981–996 (2000)

    Article  Google Scholar 

  3. Barbera, S., Jackson, M.O.: Choosing how to choose: self-stable majority rules and constitutions. Q. J. Econ. 119, 1011–1048 (2004)

    Article  Google Scholar 

  4. Kultti, K., Miettinen, P.: Stable set and voting rules. Math. Soc. Sci. 53(2), 164–171 (2007)

    Article  Google Scholar 

  5. Houy, N: Dynamics of Stable Sets of Constitutions, Mimeo (2005)

    Google Scholar 

  6. Semih, K., Slinko, A.: Self-selective social choice functions. Soc. Choice Welfare 31(1), 129–149 (2008)

    Article  Google Scholar 

  7. Diss, M., Vincent, M.: On the stability of a triplet of scoring rules. Theory Decis. 69(2), 289–316 (2010)

    Article  Google Scholar 

  8. Kultti, K., Miettinen, P.: Stability of constitutions. J. Public Econ. Theory 11(6), 891–896 (2009)

    Article  Google Scholar 

  9. Dietrich, F.: How to reach legitimate decisions when the procedure is controversial. Soc. Choice Welfare 24(2), 363–393 (2005)

    Article  Google Scholar 

  10. Taylor, A.D.: Social choice and the mathematics of manipulation. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  11. Endriss, U.: Sincerity and manipulation under approval voting. Theor. Decis. 74(3), 335–355 (2013)

    Article  Google Scholar 

  12. Schnall, E., Greenberg, M.J.: Groupthink and the Sanhedrin: an analysis of the ancient court of Israel through the lens of modern social psychology. J. Manag. Hist. 18(3), 285–294 (2012)

    Article  Google Scholar 

  13. Blair, D.H., Pollak, R.A.: Acyclic collective choice rules. Econometrica: J. Econometric Soc. 50, 931–943 (1982)

    Article  Google Scholar 

  14. Weber, M.: Choosing voting systems behind the veil of ignorance: A two-tier voting experiment. Tinbergen Institute, No. 14-042/I (2014)

    Google Scholar 

  15. Ertan, A., Talbot P., Putterman, L.: Can endogenously chosen institutions mitigate the free-rider problem and reduce perverse punishment? WP 2005–13. Brown University, Department of Economics (2005)

    Google Scholar 

  16. Arrow, K.J.: Social Choice and Individual Values. Monograph/Cowles Foundation for Research in Economics at Yale University, 12. Wiley, New York (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Suzuki .

Editor information

Editors and Affiliations

Appendix (Proofs of the Propositions)

Appendix (Proofs of the Propositions)

Lemma 1.

Let K ≥ 1 be either finite or infinite. If a level-K PCR E satisfies the ‘if’ part of ILC, then for all \( x \in X, k \in \left\{ {1,2, \ldots ,K} \right\} \) and fg ∊ F k[x], we have fI(E k)g.

Proof.

We show the lemma inductively. Take arbitrary x ∊ X and \( f, g \in F^{1} \left[ x \right] \). Then, by reflexivity of E 0, we have xE 0 x, or f(R 0)E 0 g(R 0). Therefore, by the ‘if’ part of the ILC, we have fE 1 g. Since this argument is symmetric over f and g and does not depend on what x is, we have for all x and for all fg ∊ F 1[x], fI(E 1)g.

Take any level k ∊ {1, …, K − 1}. Assume that for all fg ∊ F k[x], fI(E k)g. Let uv ∊ F k+1[x] be any x-supporting rules of level (k + 1). Then, by the completeness of E k+1, we have either uE k+1 v or vE k+1 u. Suppose one of these, for example uE k+1 v, does not hold. Then from the contraposition of ‘if’ part of the ILC, we have ¬(u(R k)E k v(R k)). By the completeness of E k, it is equivalent to v(R k)P(E k)u(R k). This contradicts the assumption, since uv ∊ F k+1[x] implies \( u\left( {R^{k} } \right), v\left( {R^{k} } \right) \in F^{k} \left[ x \right] \) and therefore the assumption demands u(R k)I(R k)v(R k). Therefore, we have inductively shown that fI(E k)g holds for all \( x \in X, k \in \left\{ {1,2, \ldots ,K} \right\} \), and fg ∊ F k[x]. ■

Proof of Proposition 1 [1]. 2 ≤ K < ∞: Take any x ∊ X. Consider a meta-profile R = (R 0R 1, …, R K−1R K) such that for all i ∊ N, \( F^{K} \left[ f \right]P\left( {O\left( {R_{i}^{K} } \right)} \right)F^{K} \left[ g \right] \) for some fg ∊ F K−1[x]. By PWP on f and g, we have fP(E K−1)g. This contradicts Lemma 1, which demands that fI(E K−1)g. ■

[2] K = ∞: Take any x ∊ X and \( k \in \varvec{N} \). Take any \( R^{j} \in W\left( {F^{j} } \right)^{n} \left( {j = 0,1, \ldots ,k - 1} \right) \) and let fg ∊ F k[x]. Consider a meta-profile such that for all i ∊ N and for all l ∊ {k + 1, k + 2, …}, \( uP\left( {R_{i}^{l} } \right)v \) for all \( u \in F^{l} \left[ f \right], v \in F^{l} \left[ g \right] \). Note that uv ∊ F l[x]. At this point the PWP condition demands fP(E k)g while the Lemma 1 demands \( fI\left( {E^{k} } \right)g \). Contradiction. ■

Proof of Proposition 2 [1]. The ‘if’ part is trivial. We show the ‘only if’ part. Suppose PCR E satisfies ILC and AF. Take any meta-profile R ∊ D, level k ∊ {1, …, K} and procedures fg ∊ F k. There are two possibilities concerning the similarity of \( f \) and g as a function. (1) There exists a level-k − 1 preference profile \( \tilde{R}{^{k - 1}} \in W\left( {F^{k - 1} }\right) \) such that \( f\left( \tilde{R}{^{k - 1}} \right) = g\left({\tilde{R}{^{k - 1}}} \right) \). Consider a meta-profile \( \tilde{R} = \left( {R^{0} ,R^{1} , \ldots ,\tilde{R}{^{k - 1}} ,R^{k} , \ldots ,R^{K} } \right) \). Then, by Lemma 1, we have \( fI\left( {\tilde{E}{^{k}}} \right)g \). On the other hand, we have \( E^{k} |_{{\left\{ {f,g} \right\}}} = \tilde{E}{^{k}}|_{{\left\{ {f,g} \right\}}} \). Therefore, we have fI(E k)g. (2) Otherwise, we consider SCF h over F k−1 such that h(R k−1) = f(R k−1) and h(R k−1) = g(R k−1) for all R k−1 ∊ W(F k−1) − {R k−1},. Since F k is the set of all possible SCFs over F k−1, such a SCF h is in F k. By applying (1) we have fI(E k)h and gI(E k)h. Thus, we have fI(E k)g.

Finally we must show that the PCR E is also indifferent for any alternatives xy ∊ X. However, it is easy from the ‘only if’ part of the ILC and the above fact that fI(E 1)g for any fg ∊ F 1. ■

Lemma 2.

(Arrow [ 16 ]). If a SWF \( f: W\left( A \right)^{n} \to W\left( A \right) \) satisfies WP and IIA, then there exists a dictator, where:

$$ {\text{WP: }}\forall S = \left( {S_{1} , \ldots ,S_{n} } \right) \in W\left( A \right)^{n} ,\forall a,b\,\epsilon\, A,\left[ {aP\left( {S_{i} } \right)b\,\forall i\,\epsilon\, N} \right] \to aP\left( {f\left( S \right)} \right)b $$
$$ {\text{IIA}}:\,\forall S,S^{\prime} \epsilon\,W\left( A\right)^{n},\forall a, b,\epsilon\,A,S_{i} |_{{\{ a,b\} }} | =S^{\prime}_{i} |_{{\{a,b\} }} \to f\left( S \right)|_{{\{ a,b\} }} =f\left( {S^{\prime}}\right)|_{{\{ a,b\}}} $$

A dictator is an individual i ∊ N such that for all S ∊ W(A) and for all ab ∊ A, aP(S i )b implies aP(f(S))b.

Proof of Proposition 2 [2]. Let E be a PCR that satisfies the ‘only if’ part of ILC, PWP, AF, and PIIA. Fix (R 0R 1, …, R K−1) ∊ W(X) × W(F 1) × … × W(F K−1) and let A be a set such that \( {\text{A}}\text{ := }\left\{ {F^{K} \left[ f \right]|f \in F^{K - 1} } \right\} \). By AF, we have a function G such that for all R K, E K−1(R 0, …, R K) = G(R K). Moreover, by PIIA, there exists a function G :W(A)n → W(F K−1) such that \( G\left( {R^{K} } \right) = G^{'} \left( {O\left( {R_{1}^{K} } \right),O\left( {R_{2}^{K} } \right), \ldots ,O\left( {R_{n}^{K} } \right)} \right) \) for all R K ∊ W(F K). Let us consider another function \( \mu :W\left( {F^{K - 1} } \right) \to W\left( A \right) \) such that for all \( \tilde{R}{^{{{\text{K}} - 1}}} \in W\left({F^{K - 1} }\right) \) and fg ∊ F K−1, \( f\tilde{R}{^{K - 1}} g \) if and only if \( F^{K} \left[f \right]\mu \left({\tilde{R}{^{K - 1}}} \right)F^{K} \left[g \right] \). Construct a composite function \( \nu \text{ := }\mu \bigcirc G^{'} :W\left( A \right)^{n} \to W\left( A \right) \). This is a SWF for the set A, and it is easy to see that our PWP and PIIA condition demands the WP and IIA for SWF ν. Therefore, by Lemma 2 we have a dictator j ∊ N (of SWF ν) such that for all S ∊ W(A) and for all F K[f], F K[g] ∊ A, if \( F^{K} \left[ f \right]P\left( {O\left( {R_{j}^{K} } \right)} \right)F^{K} \left[ g \right] \), then fP(ν(S))g. By the way we have constructed μ, we have fP(E K−1)g. Since this argument does not depend on the value of R 0R 1, …, R K−1 or what f and g are, we can conclude that the set of axioms yield a vetoer over any pair in F K−1.

We must only show the level under K − 1. Take any level l ∊ {0, 1, …, K − 2} and any alternatives/procedures xy ∊ F l. Assume that \( F^{K} \left[ x \right]P\left( {O\left( {R_{j}^{k} } \right)} \right)F^{K} \left[ y \right]\, \). Take f  ∊ F K−1[x] and g ∊ F K−1[y] such that \( F^{K} \left[ {f^{'} } \right] \in G\left( {O\left( {R_{j}^{K} } \right), B_{x} } \right) \) and \( F^{K} \left[ {g^{'} } \right] \in G\left( {O\left( {R_{j}^{K} } \right), B_{y} } \right) \), where B x : = {F K[h]|f ∊ F K−1[x]} and B y : = {F K[h]|f ∊ F K−1[y]}. Since \( O\left( {R_{j}^{K} } \right) \) is a weak ordering over \( 2^{{F^{K} }} \), \( G\left( {O\left( {R_{j}^{K} } \right),B_{w} } \right)\left( {w = x,y} \right) \) are non-empty and we can take such f′ and g′. Now, the definition of the operator O( ) and the assumption of F K[x]P(O(R))F K[y] together yield F K[f′]P(O(R))F K[g′]. From the above paragraph we get fP(E K−1)g′. Finally, iterating the ‘only if’ part of ILC we get xE k y.■

Proof of Proposition 3 [1]. The counterexample showed in the proof of Proposition 1 also applies under D C . ■

[2] Let us consider a SWF S:W(X)n → W(X) which satisfies the Pareto principle: for all preference profile of level 0 R 0 ∊ W(X), \( \left[ {xP\left( {R_{i}^{0} } \right)y\;for \;all\; i \in N} \right] \) implies xP(S(R 0))y. Now we define PCR E S such that (1) for all xy ∊ X, xE 0 y if and only if xS(R 0)y and (2) for all k ∊ {1, 2, …, K} and fg ∊ F k, fE k+1 g if and only if f(R k)E k g(R k). We will show that this E S is actually a PCR and satisfies the ILC and PWP. The completeness of each E k S (k = 0, 1, …, K) is obvious. To show they are transitive, suppose E k S  ∊ W(F k). Take any procedures fgh ∊ F k+1 and assume fE k+1 g and gE k+1 h. By (2) we have f(R k)E k g(R k) and g(R k)E k h(R k). This implies f(R k)E k h(R k) by the transitivity of E k. By (2) once again we get fE k+1 h. Since E 0 ≡ S(R 0) is transitive, we have inductively that E k ∊ W(F k) for all k ∊ {0, 1, …, K}. Now we show that E S satisfies the ILC and PWP, but the former is obvious because of (2). So we show PWP. Take any k ∊ {0, 1, …, K − 1} and fg ∊ F k. Suppose \( F^{l} \left[ f \right]P\left( {O\left( {R_{i}^{l} } \right)} \right)F^{l} \left[ g \right] \) for all l ∊ {k + 1, …, K}. Iterating the condition of extremely consequentialist, we have for all \( l \in \left\{ {{\text{k}} + 1, \ldots ,K} \right\} \). Iterating the condition of extremely consequentialist, we have for all \( i \in N \) \( f\left({R^{k - 1} } \right)P(R_{i}^{k - 1} )g(R^{k - 1} ),f\left({R^{k - 1}} \right)(R^{k - 2})P(R_{i}^{k - 2})g(R^{k - 1})(R^{k - 2}), \ldots,xP(R_{i}^{0})y, \) where \( f \in F^{k} [x] \) and \( {\text{g}} \in {\text{F}}^{\text{k}} \left[ {\text{y}} \right]. \) The Pareto prinicple of \( {\text{E}}^{ 0} \equiv {\text{S}}\left( {{\text{R}}^{0} } \right) \) implies \( {\text{xP}}\left( {{\text{E}}^{ 0} } \right){\text{y}} \). Iteration of the contraposition of the ‘only if’ part of the ILC gives \( fP(E^{k} )g \).

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Suzuki, T., Horita, M. (2015). How to Order the Alternatives, Rules, and the Rules to Choose Rules: When the Endogenous Procedural Choice Regresses. In: Kamiński, B., Kersten, G., Szapiro, T. (eds) Outlooks and Insights on Group Decision and Negotiation. GDN 2015. Lecture Notes in Business Information Processing, vol 218. Springer, Cham. https://doi.org/10.1007/978-3-319-19515-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19515-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19514-8

  • Online ISBN: 978-3-319-19515-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics