Skip to main content

Spikes, Spots and Pulses

  • Chapter
Parabolic Equations in Biology
  • 2366 Accesses

Abstract

Typical behaviors of solutions of elliptic equations or systems are spikes or spots. In parabolic systems, solutions that vanish at both ends also occur and they travel with constant speed: we call them pulses. These types of solutions arise in various areas of biology: chemotaxis, adaptive evolution, FitzHugh-Nagumo system for electric pulses in nerves. We explain how this type of localized patterns can arise. A fascinating aspect is the emergence of unstable waves and dynamic patterns as in the Gray-Scott system and its many extensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alford, J.G., Auchmuty, G.: Rotating wave solutions of the FitzHugh-Nagumo equations. J. Math. Biol. 53(5), 797–819 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aliev, R., Panfilov, A.: A simple two-variable model of cardiac excitation. Chaos Solitons Fractals 3(7), 293–301 (1996)

    Article  Google Scholar 

  3. Baker, R.E., Gaffney, E.A., Maini, P.K.: Partial differential equations for self-organization in cellular and developmental biology. Nonlinearity 21, R251–R290 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barles, G.: Solutions de viscosité des équations de Hamilton-Jacobi. Springer, Berlin/Heidelberg (1994)

    MATH  Google Scholar 

  5. Ben Amar, M., Chatelain, C., Ciarletta, P.: Contour instabilities in early tumor growth models. PRL 106, 148101 (2011)

    Article  Google Scholar 

  6. Blanchet, A., Dolbeault, J., Perthame, B.: Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Diff. Equ. 2006(44), 1–32 (2006)

    MathSciNet  Google Scholar 

  7. Calvez, V., Carrillo, J.A.: Volume effects in the Keller-Segel model: energy estimates preventing blow-up. J. Math. Pures et Appl. 86(2), 155–175 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chalub, F., Rodriguez, J.-F.: Proceedings of the Conference ‘The Mathematics of Darwin’s Legacy’, Lisbon, 2010. Birkhauser (Basel) Series Mathematics and Biosciences in Interaction (2011)

    Google Scholar 

  9. Ciarletta, P., Foret, L., Ben Amar, M.: The radial growth phase of malignant melanoma: multi-phase modeling, numerical simulations and linear stability analysis. J. R. Soc. Interface 8(56), 345–368 (2011)

    Article  Google Scholar 

  10. Diekmann, O.: A beginner’s guide to adaptive dynamic. In: Rudnicki, R. (ed.) Mathematical Modeling of Population Dynamic. Banach Center Publications, vol. 63, pp. 47–86. Polish Academy of Sciences, Warsaw (2004)

    Google Scholar 

  11. Ei, S.-I., Ikota, R., Mimura, M.: Segregating partition problem in competition-diffusion systems. Interfaces Free Bound 1, 57–80 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Françoise, J.-P.: Oscillations en biologie. Collection Mathématiques et Applications. SMAI, Springer, Paris (2005)

    Book  MATH  Google Scholar 

  13. FreeFEM++: Software available at http://www.freefem.org (2015)

  14. Golding, I., Kozlovski, Y., Cohen, I., BenJacob, E.: Studies of bacterial branching growth using reaction-diffusion models for colonial development. Physica A 260, 510–554 (1998)

    Article  Google Scholar 

  15. Hecht, F.: New development in FreeFEM++. J. Numer. Math. 20(3–4), 251–265 (2012)

    MATH  MathSciNet  Google Scholar 

  16. Hillen, T., Painter, K.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58(1), 183–217 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Keener, J., Sneyd, J.: Mathematical Physiology. Springer, New York (2008)

    Google Scholar 

  18. Kolokolnikov, T., Ward, M.J., Wei, J.: The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: the pulse-splitting regime. Physica D 202, 258–293 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mimura, M., Sakaguchi, H., Matsuchita, M.: Reaction diffusion modeling of bacterial colony patterns. Physica A 282, 283–303 (2000)

    Article  Google Scholar 

  20. Murakawa, H., Ninomiya, H.: Fast reaction limit of a three-component reaction-diffusion system. J. Math. Anal. Appl. 379(1), 150–170 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  21. Muratov, C., Ospinov, V.V.: Stability of the static spike autosolitons in the Gray-Scott model. SIAM J. Appl. Math. 62(5), 1463–1487 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Murray, J.D.: Mathematical Biology, vols. 1 and 2, 2nd edn. Springer, New York (2002)

    Google Scholar 

  23. Perthame, B.: Transport Equations Arising in Biology. L. N. series ‘Frontiers in Mathematics’. Birkhauser, Basel (2007)

    Google Scholar 

  24. Perthame, B., Schmeiser, C., Tang, M., Vauchelet, N.: Traveling plateaus for a hyperbolic Keller-Segel system with attraction and repulsion: existence and branching instabilities. Nonlinearity 24, 1253–1270 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Roger, J.M., McCulloch, A.D.: A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41, 743–757 (1994)

    Article  Google Scholar 

  26. Stevens, A.: Derivation of chemotaxis-equations as limit dynamic of moderately interacting stochastic many particle systems. SIAM J. Appl. Math. 61, 183–212 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Thiriet, M.: Tissue Functioning and Remodeling in the Circulatory and Ventilatory Systems. Springer, Berlin (2013)

    Book  Google Scholar 

  28. Winfree, A.: Are cardiac waves relevant to epileptic wave propagation? In: Milton, J., Jung, P. (eds.) Epilepsy as a Dynamical Disease, Chap. 10. Springer, Berlin (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Perthame, B. (2015). Spikes, Spots and Pulses. In: Parabolic Equations in Biology. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-19500-1_5

Download citation

Publish with us

Policies and ethics