Skip to main content

Parabolic Equations in Biology

  • Chapter
Parabolic Equations in Biology

Abstract

This chapter contains a general presentation of parabolic partial differential equations that are used in biology: Lotka-Volterra systems and chemical or enzymatic reactions. These are reaction-diffusion equations, or in a mathematical classification, semilinear equations. Our goal is to explain what mathematical properties follow from the set-up of the model: nonnegativity properties, monotonicity and entropy inequalities. We put a special emphasis on several general concepts: competitive or cooperative systems, law of mass action, derivation of the Michaelis-Menten law, Belousov-Zhabotinskii reaction. A connection is introduced between the heat equation and the Brownian motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andreianov, B., Labani, H.: Preconditioning operators and \(L^{\infty }\) attractor for a class of reaction-diffusion systems. Commun. Pure Appl. Anal. 11(6), 2179–2199 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baker, R.E., Gaffney, E.A., Maini, P.K.: Partial differential equations for self-organization in cellular and developmental biology. Nonlinearity 21, R251–R290 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Briggs, G.E., Haldane, J.B.S.: A note on the kinematics of enzyme action. Biochem. J. 19, 338–339 (1925)

    Article  Google Scholar 

  4. Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction–Diffusion Equations. Wiley, Sussex (2003)

    MATH  Google Scholar 

  5. De Masi, A., Presutti, E.: Mathematical Methods for Hydrodynamic Limits. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  6. Desvillettes, L., Fellner, K.: Entropy methods for reaction-diffusion equations: slowly growing a-priori bounds. Rev. Mat. Iberoam. 24(2), 407–431 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Doob, J.-L.: Markoff chains - Denumerable case. Trans. Am. Math. Soc. 58(3), 455–473 (1945)

    Article  MATH  MathSciNet  Google Scholar 

  8. Françoise, J.-P.: Oscillations en biologie. Collection Mathématiques et Applications. SMAI, Springer, Paris (2005)

    Book  MATH  Google Scholar 

  9. Gauduchon, M., Perthame, B.: Survival thresholds and mortality rates in adaptive dynamic: conciliating deterministic and stochastic simulations. Math. Med. Biol. 27(3), 195–210 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  11. Godlewski, E., Raviart, P.-A.: Numerical Approximation of Hyperbolic Systems of Conservation Laws. Applied Mathematical Sciences, vol. 118. Springer, New York (1996)

    Google Scholar 

  12. Goudon, T., Vasseur, A.: Regularity analysis for systems of reaction-diffusion equations. Ann. l’ENS 43(1), 117–141 (2010)

    MATH  MathSciNet  Google Scholar 

  13. Keener, J., Sneyd, J.: Mathematical Physiology. Springer, Heidelberg (2008)

    Google Scholar 

  14. Michaelis, L., Menten, M.I.: Die kinetic der invertinwirkung. Biochem. Z. 49, 333–369 (1913)

    Google Scholar 

  15. Murray, J.D.: Mathematical Biology, vols. 1 and 2, 2nd edn. Springer, New York (2002)

    Google Scholar 

  16. Okubo, A., Levin, S.A. (eds.): Diffusion and Ecological Problems, Modern Perspectives, 2nd edn. Springer, New York (2001)

    Google Scholar 

  17. Perthame, B.: Transport Equations Arising in Biology. L. N. Series Frontiers in Mathematics. Birkhauser, Basel (2007)

    Google Scholar 

  18. Pierre, M.: Global existence in reaction-diffusion systems with control of mass: a survey. Milan J. Math. 78(2), 417–455 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Thieme, H.R.: Mathematics in Population Biology. Woodstock Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  20. Turner, A.: A Simple Model of the Belousov-Zhabotinsky Reaction from First Principles. http://www.aac.bartlett.ucl.ac.uk/processing/samples/bzr.pdf (2009)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Perthame, B. (2015). Parabolic Equations in Biology. In: Parabolic Equations in Biology. Lecture Notes on Mathematical Modelling in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-19500-1_1

Download citation

Publish with us

Policies and ethics