Skip to main content

Proteases in Apoptosis: Protocols and Methods

  • Chapter

Abstract

Proteases in apoptosis have evolved as major drug targets in the past few decades. Development in this direction has been brought about by efficient design and refinement of the various platforms of protease assays. These can be broadly categorized into general assays, that characterize kinetics and biochemistry of apoptotic proteases, and the more specific assays devoted to discern proteases involved in apoptosis. Together, these two approaches comprise a flawless two-pronged approach to understand the role of proteases in apoptosis and their therapeutic applications. This chapter lays down a comprehensive account of different experimental procedures spanning the use of in vitro purified proteases to those that monitor enzyme activity and its apoptotic effect in fixed or live cells. In this regard, fluorescence based platforms are the workhorse of fast, accurate, easy-to-use and high throughput screening amenable procedures. Therefore, they form the majority of techniques, among others, covered in this chapter. Apart from the popular methods currently in use, this chapter also provides a bird’s eye view of the future of the protease assays with special mention of protease activatable prodrugs and protease engineering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bond JS, Butler PE (1987) Intracellular proteases. Annu Rev Biochem 56:333–364

    CAS  PubMed  Google Scholar 

  2. Dixon M, Webb E (1979) Enzymes. Academic Press, New York

    Google Scholar 

  3. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    CAS  PubMed  Google Scholar 

  4. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799

    CAS  PubMed  Google Scholar 

  5. Elmore S (2007) Apoptosis: A review of programmed cell death. Toxicol Pathol 35:495–516

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Favaloro B, Allocati N, Graziano V, Di Ilio C, De Laurenzi V (2012) Role of apoptosis in disease. Aging (Albany NY) 4:330–349

    CAS  Google Scholar 

  7. Mattson MP (2000) Apoptosis in neurodegenarative disorders. Nat Rev 1:120–129

    CAS  Google Scholar 

  8. Wyllie AH (1997) Apoptosis and carcinogenesis. Eur J Cell Biol 73:189–197

    CAS  PubMed  Google Scholar 

  9. Eguchi K (2001) Apoptosis in autoimmune diseases. Intern Med 40:275–284

    CAS  PubMed  Google Scholar 

  10. Hayashi T, Faustman DL (2003) Role of defective apoptosis in type 1 diabetes and other autoimmune diseases. Recent Prog Horm Res 58:131–153

    CAS  PubMed  Google Scholar 

  11. Ameisen JC, Capron A (1991) Cell dysfunction and depletion in AIDS: the programmed cell death hypothesis. Immunol Today 12:102–105

    CAS  PubMed  Google Scholar 

  12. Lockshin RA, Zakeri Z (2001) Programmed cell death and apoptosis: origins of the theory. Nat Rev Mol Cell Biol 2:545–550

    CAS  PubMed  Google Scholar 

  13. Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  14. Kaufmann SH, Mesner PW Jr, Samejima K, Tone S, Earnshaw WC (2000) Detection of DNA cleavage in apoptotic cells. Methods Enzymol 322:3–15

    CAS  PubMed  Google Scholar 

  15. Steller H (1995) Mechanisms and genes of cellular suicide. Science 267:1445–1449

    CAS  PubMed  Google Scholar 

  16. Kaufmann SH, Desnoyers S, Ottaviano Y, Davidson NE, Poirier GG (1993) Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res 53:3976–3985

    CAS  PubMed  Google Scholar 

  17. Casciola-Rosen LA, Miller DK, Anhalt GJ, Rosen A (1994) Specific cleavage of the 70-kDa protein component of the U1 small nuclear ribonucleoprotein is a characteristic biochemical feature of apoptotic cell death. J Biol Chem 269:30757–30760

    CAS  PubMed  Google Scholar 

  18. Hebert L, Pandey S, Wang E (1994) Commitment to cell death is signaled by the appearance of a terminin protein of 30 kDa. Exp Cell Res 210:10–18

    CAS  PubMed  Google Scholar 

  19. Oberhammer FA, Hochegger K, Froschl G, Tiefenbacher R, Pavelka M (1994) Chromatin condensation during apoptosis is accompanied by degradation of lamin A+B, without enhanced activation of cdc2 kinase. J Cell Biol 126:827–837

    CAS  PubMed  Google Scholar 

  20. Martin S, O’Brien CA, Nishioka W et al (1995) Proteolysis of fodrin (non-erythroid spectrin) during apoptosis. J Biol Chem 270:6425–6428

    CAS  PubMed  Google Scholar 

  21. Bruno S, Del Bino G, Lassota P, Giaretti W, Darzynkiewicz Z (1992) Inhibitors of proteases prevent endonucleolysis accompanying apoptotic death of HL-60 leukemic cells and normal thymocytes. Leukemia 6:1113–1120

    CAS  PubMed  Google Scholar 

  22. Sarin A, Adams DH, Henkart PA (1993) Protease inhibitors selectively block T cell receptor-triggered programmed cell death in a murine T cell hybridoma and activated peripheral T cells. J Exp Med 178:1693–1700

    CAS  PubMed  Google Scholar 

  23. Ray CA, Black RA, Kronheim SR, Greenstreet TA, Sleath PR, Salvesen GS, Pickup DJ (1992) Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme. Cell 69:597–604

    CAS  PubMed  Google Scholar 

  24. Komiyama T, Ray CA, Pickup DJ, Howard AD, Thornberry NA, Peterson EP, Salvesen G (1994) Inhibition of interleukin-1 beta converting enzyme by the cowpox virus serpin CrmA. An example of cross-class inhibition. J Biol Chem 269:19331–19337

    CAS  PubMed  Google Scholar 

  25. Kuida K, Lippke JA, Ku G, Harding MW, Livingston DJ, Su MS, Flavell RA (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267:2000–2003

    CAS  PubMed  Google Scholar 

  26. Izzo JL Jr, Weir MR (2011) Angiotensin-converting enzyme inhibitors. J Clin Hypertens (Greenwich) 13:667–675

    CAS  Google Scholar 

  27. Thompson MA, Aberg JA, Hoy JF, Telenti A, Benson C, Cahn P, Eron JJ, Gunthard HF, Hammer SM, Reiss P, Richman DD, Rizzardini G, Thomas DL, Jacobsen DM, Volberding PA (2012) Antiretroviral treatment of adult HIV infection: 2012 recommendations of the International Antiviral Society-USA panel. JAMA 308:387–402

    CAS  PubMed  Google Scholar 

  28. Nachman S, Zheng N, Acosta EP, Teppler H, Homony B, Graham B, Fenton T, Xu X, Wenning L, Spector SA, Frenkel LM, Alvero C, Worrell C, Handelsman E, Wiznia A (2014) Pharmacokinetics, safety, and 48-week efficacy of oral raltegravir in HIV-1-infected children aged 2 through 18 years. Clin Infect Dis 58:413–422

    CAS  PubMed Central  PubMed  Google Scholar 

  29. He Y, King MS, Kempf DJ, Lu L, Lim HB, Krishnan P, Kati W, Middleton T, Molla A (2008) Relative replication capacity and selective advantage profiles of protease inhibitor-resistant hepatitis C virus (HCV) NS3 protease mutants in the HCV genotype 1b replicon system. Antimicrob Agents Chemother 52:1101–1110

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Kawada T, Okada Y, Hoson M, Endo S, Yokoyama M, Kitanaka Y, Kimura K, Abe H, Yamate N (1999) Argatroban, an attractive anticoagulant, for left heart bypass with centrifugal pump for repair of traumatic aortic rupture. Jpn J Thorac Cardiovasc Surg 47:104–109

    CAS  PubMed  Google Scholar 

  31. Matsuo T, Kario K, Matsuda S, Yamaguchi N, Kakishita E (1995) Effect of thrombin inhibition on patients with peripheral arterial obstructive disease: A multicenter clinical trial of argatroban. J Thromb Thrombolysis 2:131–136

    CAS  PubMed  Google Scholar 

  32. Herman GA, Stevens C, Van Dyck K, Bergman A, Yi B, De Smet M, Snyder K, Hilliard D, Tanen M, Tanaka W, Wang AQ, Zeng W, Musson D, Winchell G, Davies MJ, Ramael S, Gottesdiener KM, Wagner JA (2005) Pharmacokinetics and pharmacodynamics of sitagliptin, an inhibitor of dipeptidyl peptidase IV, in healthy subjects: results from two randomized, double-blind, placebo-controlled studies with single oral doses. Clin Pharmacol Ther 78:675–688

    CAS  PubMed  Google Scholar 

  33. Karasik A, Aschner P, Katzeff H, Davies MJ, Stein PP (2008) Sitagliptin, a DPP-4 inhibitor for the treatment of patients with type 2 diabetes: a review of recent clinical trials. Curr Med Res Opin 24:489–496

    CAS  PubMed  Google Scholar 

  34. Wadhawan M, Singh N, Rathaur S (2014) Inhibition of cathepsin B by E-64 induces oxidative stress and apoptosis in filarial parasite. PLoS One 9, e93161

    PubMed Central  PubMed  Google Scholar 

  35. Saeki Y, Fukunaga K, Tanaka K (2010) Proteasome inhibitors. Nihon Rinsho 68:1818–1822

    PubMed  Google Scholar 

  36. Marchi E, Paoluzzi L, Scotto L, Seshan VE, Zain JM, Zinzani PL, O'Connor OA (2010) Pralatrexate is synergistic with the proteasome inhibitor bortezomib in in vitro and in vivo models of T-cell lymphoid malignancies. Clin Cancer Res 16:3648–3658

    CAS  PubMed  Google Scholar 

  37. von Schwarzenberg K, Held SA, Schaub A, Brauer KM, Bringmann A, Brossart P (2009) Proteasome inhibition overcomes the resistance of renal cell carcinoma cells against the PPARgamma ligand troglitazone. Cell Mol Life Sci 66:1295–1308

    CAS  Google Scholar 

  38. Carreno FLG (1992) Protease inhibition in theory and practice. Biotechnol Educ 3:145–150

    Google Scholar 

  39. Sharma R (2012) Enzyme inhibition: mechanisms and scope, enzyme inhibition and bioapplications. In: Sharma R (ed) InTech, pp 1–35. ISBN: 978-953-51-0585-5. doi:10.5772/39273. Available from: http://www.intechopen.com/books/enzyme-inhibition-and-bioapplications/enzyme-inhibition-mechanisms-and-scope

  40. Berg JM, Tymoczko J, Stryer L (2002) Biochemistry, 5th edn. W H Freeman, New York

    Google Scholar 

  41. Cleland WW (1967) Enzyme kinetics. Annu Rev Biochem 36:77–112

    CAS  PubMed  Google Scholar 

  42. Briggs G, Haldane J (1925) A note on the kinetics of enzyme action. Biochem J 19:338–339

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Rogers A, Gibon Y (2009) Chapter 4: Enzyme kinetics: theory & practice. In: Schwender J (ed) Plant metabolic networks. Springer, Berlin/Heidelberg/New York, pp 71–103. ISBN 978-0-38-778744-2

    Google Scholar 

  44. Gubler H, Schopfer U, Jacoby E (2013) Theoretical and experimental relationships between percent inhibition and IC50 data observed in high-throughput screening. J Biomol Screen 18:1–13

    CAS  PubMed  Google Scholar 

  45. Krishna PN (2011) Enzyme technology : pacemaker of biotechnology. PHI Learning Pvt. Ltd., New Delhi

    Google Scholar 

  46. Shen P, Larter R (1994) Role of substrate inhibition kinetics in enzymatic chemical oscillations. Biophys J 67:1414–1428

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Holt A (1999) On the measurement of enzymes and their inhibitors. In: Cell neurobiology techniques. Humana Press, Totowa, pp 131–194

    Google Scholar 

  48. Waley SG (1993) The kinetics of slow-binding and slow, tight-binding inhibition: the effects of substrate depletion. Biochem J 294(Pt 1):195–200

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Brooks HB, Geeganage S, Kahl SD et al (2012) Basics of enzymatic assays for HTS. In: Sittampalam GS, C N, Nelson H et al (ed). Eli Lilly & Company/National Center for Advancing Translational Sciences, Bethesda

    Google Scholar 

  50. Kraut J (1977) Serine proteases: structure and mechanism of catalysis. Annu Rev Biochem 46:331–358

    CAS  PubMed  Google Scholar 

  51. Baruch A, Jeffery DA, Bogyo M (2004) Enzyme activity–it’s all about image. Trends Cell Biol 14:29–35

    CAS  PubMed  Google Scholar 

  52. Funovics M, Weissleder R, Tung CH (2003) Protease sensors for bioimaging. Anal Bioanal Chem 377:956–963

    CAS  PubMed  Google Scholar 

  53. Lakowicz JR (1983) Principles of fluorescence spectroscopy. Springer Science+Business Media, New York

    Google Scholar 

  54. Royer CA, Scarlata SF (2008) Fluorescence approaches to quantifying biomolecular interactions. Methods Enzymol 450:79–106

    CAS  PubMed  Google Scholar 

  55. Burns B, Mendz G, Hazell S (1998) Methods for the measurement of a bacterial enzyme activity in cell lysates and extracts. Biol Proced Online 1:17–26

    PubMed Central  PubMed  Google Scholar 

  56. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Method 2:905–909

    CAS  Google Scholar 

  57. Combs CA (2010) Fluorescence microscopy: a concise guide to current imaging methods. Curr Protoc Neurosci, Chapter 2, Unit 2 1

    Google Scholar 

  58. Delgadillo RF, Parkhurst LJ (2010) Spectroscopic properties of fluorescein and rhodamine dyes attached to DNA. Photochem Photobiol 86:261–272

    CAS  PubMed  Google Scholar 

  59. Sjoback R, Nygren J, Kubista M (1995) Absorption and fluorescence properties of fluorescein. Spectrochim Acta A Mol Biomol Spectrosc 51:L7–L21

    Google Scholar 

  60. Batchelor RH, Zhou M (2002 Jun 1) A resorufin-based fluorescent assay for quantifying NADH. Anal Biochem 305(1):118–9

    Google Scholar 

  61. Benson JR, Hare PE (1975) O-phthalaldehyde: fluorogenic detection of primary amines in the picomole range. Comparison with fluorescamine and ninhydrin. Proc Natl Acad Sci U S A 72:619–622

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Kiernan JA (2007) Indigogenic substrates for detection and localization of enzymes. Biotechnic Histochem 82:73–103

    CAS  Google Scholar 

  63. Grant SK, Sklar JG, Cummings RT (2002) Development of novel assays for proteolytic enzymes using rhodamine-based fluorogenic substrates. J Biomol Screen 7:531–540

    CAS  PubMed  Google Scholar 

  64. Cilenti L, Lee Y, Hess S, Srinivasula S, Park KM, Junqueira D, Davis H, Bonventre JV, Alnemri ES, Zervos AS (2003) Characterization of a novel and specific inhibitor for the pro-apoptotic protease Omi/HtrA2. J Biol Chem 278:11489–11494

    CAS  PubMed  Google Scholar 

  65. Sittampalam GS (2012) Assay guidance manual [Internet]. In: GS Sittampalam, C N, Nelson H et al (ed) Protease assays. Eli Lilly & Company/National Center for Advancing Translational Sciences, Bethesda

    Google Scholar 

  66. Farmer WH, Yuan ZY (1991) A continuous fluorescent assay for measuring protease activity using natural protein substrate. Anal Biochem 197:347–352

    CAS  PubMed  Google Scholar 

  67. Wickstrom C, Herzberg MC, Beighton D, Svensater G (2009) Proteolytic degradation of human salivary MUC5B by dental biofilms. Microbiology 155:2866–2872

    PubMed Central  PubMed  Google Scholar 

  68. Chaganti LK, Kuppili RR, Bose K (2013) Intricate structural coordination and domain plasticity regulate activity of serine protease HtrA2. FASEB J 27:3054–3066

    CAS  PubMed  Google Scholar 

  69. Shi J, Dertouzos J, Gafni A, Steel D (2008) Application of single-molecule spectroscopy in studying enzyme kinetics and mechanism. Methods Enzymol 450:129–157

    CAS  PubMed  Google Scholar 

  70. Selvin PR (2000) The renaissance of fluorescence resonance energy transfer. Nat Struct Biol 7:730–734

    CAS  PubMed  Google Scholar 

  71. Wu P, Brand L (1994) Resonance energy transfer: methods and applications. Anal Biochem 218:1–13

    CAS  PubMed  Google Scholar 

  72. Packard BZ, Komoriya A (2008) A method in enzymology for measuring hydrolytic activities in live cell environments. Methods Enzymol 450:1–19

    CAS  PubMed  Google Scholar 

  73. Jares-Erijman EA, Jovin TM (2003) FRET imaging. Nat Biotechnol 21:1387–1395

    CAS  PubMed  Google Scholar 

  74. Packard BZ, Komoriya A (2008) Chapter 1: A method in enzymology for measuring hydrolytic activities in live cell environments. In: Ludwig B, Michael LJ (ed) Methods in enzymology. Academic Press, New York, pp 1–19

    Google Scholar 

  75. Berney C, Danuser G (2003) FRET or no FRET: a quantitative comparison. Biophys J 84:3992–4010

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Didenko VV (2001) DNA probes using fluorescence resonance energy transfer (FRET): designs and applications. Biotechniques 31:1106–1116, 1118, 1120–1101

    Google Scholar 

  77. Sapsford KE, Berti L, Medintz IL (2006) Materials for fluorescence resonance energy transfer analysis: beyond traditional donorБ─⌠acceptor combinations. Angew Chem Int Ed 45:4562–4589

    CAS  Google Scholar 

  78. Piston DW, Kremers GJ (2007) Fluorescent protein FRET: the good, the bad and the ugly. Trends Biochem Sci 32:407–414

    CAS  PubMed  Google Scholar 

  79. Szollosi J, Damjanovich S, Matyus L (1998) Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research. Cytometry 34:159–179

    CAS  PubMed  Google Scholar 

  80. Tian H, Ip L, Luo H, Chang DC, Luo KQ (2007) A high throughput drug screen based on fluorescence resonance energy transfer (FRET) for anticancer activity of compounds from herbal medicine. Br J Pharmacol 150:321–334

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846

    CAS  PubMed  Google Scholar 

  82. Stojanovic MN, de Prada P, Landry DW (2000) Homogeneous assays based on deoxyribozyme catalysis. Nucleic Acids Res 28:2915–2918

    CAS  PubMed Central  PubMed  Google Scholar 

  83. van der Krogt GNM, Ogink J, Ponsioen B, Jalink K (2008) A comparison of donor-acceptor pairs for genetically encoded FRET sensors: application to the epac cAMP sensor as an example. PLoS One 3, e1916

    PubMed Central  PubMed  Google Scholar 

  84. Woehler A, Wlodarczyk J, Neher E (2010) Signal/noise analysis of FRET-based sensors. Biophys J 99:2344–2354

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Okamura Y, Kondo S, Sase I, Suga T, Mise K, Furusawa I, Kawakami S, Watanabe Y (2000) Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization. Nucleic Acids Res 28, E107

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Le Reste L, Hohlbein J, Gryte K, Kapanidis AN (2012) Characterization of dark quencher chromophores as nonfluorescent acceptors for single-molecule FRET. Biophys J 102:2658–2668

    PubMed Central  PubMed  Google Scholar 

  87. Tatham MH, Hay RT (2009) FRET-based in vitro assays for the analysis of SUMO protease activities. Methods Mol Biol 497:253–268

    CAS  PubMed  Google Scholar 

  88. Cummings RT, Salowe SP, Cunningham BR, Wiltsie J, Park YW, Sonatore LM, Wisniewski D, Douglas CM, Hermes JD, Scolnick EM (2002) A peptide-based fluorescence resonance energy transfer assay for Bacillus anthracis lethal factor protease. Proc Natl Acad Sci U S A 99:6603–6606

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Lea WA, Simeonov A (2011) Fluorescence polarization assays in small molecule screening. Expert Opin Drug Discov 6:17–32

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Inglese J, Shamu CE, Guy RK (2007) Reporting data from high-throughput screening of small-molecule libraries. Nat Chem Biol 3:438–441

    CAS  PubMed  Google Scholar 

  91. Owicki JC (2000) Fluorescence polarization and anisotropy in high throughput screening: perspectives and primer. J Biomol Screen 5:297–306

    CAS  PubMed  Google Scholar 

  92. Pu Y, Wang W, Dorshow RB, Das BB, Alfano RR (2013) Review of ultrafast fluorescence polarization spectroscopy [Invited]. Appl Opt 52:917–929

    CAS  PubMed  Google Scholar 

  93. Jameson DM, Croney JC (2003) Fluorescence polarization: past, present and future. Comb Chem High Throughput Screen 6:167–176

    CAS  PubMed  Google Scholar 

  94. Halfman CJ, Schneider AS (1982) Direct measurement of fluorescence polarization or anisotropy. Anal Chem 54:2009–2011

    CAS  Google Scholar 

  95. Popelka SR, Miller DM, Holen JT, Kelso DM (1981) Fluorescence polarization immunoassay. II. Analyzer for rapid, precise measurement of fluorescence polarization with use of disposable cuvettes. Clin Chem 27:1198–1201

    CAS  PubMed  Google Scholar 

  96. Brinkley M (1992) A brief survey of methods for preparing protein conjugates with dyes, haptens, and cross-linking reagents. Bioconjug Chem 3:2–13

    CAS  PubMed  Google Scholar 

  97. Wessendorf MW, Brelje TC (1992) Which fluorophore is brightest? A comparison of the staining obtained using fluorescein, tetramethylrhodamine, lissamine rhodamine, Texas red, and cyanine 3.18. Histochemistry 98:81–85

    CAS  PubMed  Google Scholar 

  98. Wood EJ (1994) Molecular probes: handbook of fluorescent probes and research chemicals: by R P Haugland, pp 390. Interchim (Molecular Probes Inc, PO Box 22010 Eugene, OR 97402–0414, USA, or 15 rue des Champs, 92600 Asnieres, Paris). 1992–1994. $15. Biochem Educ 22:83–83

    Google Scholar 

  99. Nasir MS, Jolley ME (1999) Fluorescence polarization: an analytical tool for immunoassay and drug discovery. Comb Chem High Throughput Screen 2:177–190

    CAS  PubMed  Google Scholar 

  100. Levine LM, Michener ML, Toth MV, Holwerda BC (1997) Measurement of specific protease activity utilizing fluorescence polarization. Anal Biochem 247:83–88

    CAS  PubMed  Google Scholar 

  101. Roehrl MH, Wang JY, Wagner G (2004) A general framework for development and data analysis of competitive high-throughput screens for small-molecule inhibitors of protein-protein interactions by fluorescence polarization. Biochemistry 43:16056–16066

    CAS  PubMed  Google Scholar 

  102. Schade SZ, Jolley ME, Sarauer BJ, Simonson LG (1996) BODIPY-alpha-casein, a pH-independent protein substrate for protease assays using fluorescence polarization. Anal Biochem 243:1–7

    CAS  PubMed  Google Scholar 

  103. Patel T, Gores GJ, Kaufmann SH (1996) The role of proteases during apoptosis. FASEB J 10:587–597

    CAS  PubMed  Google Scholar 

  104. Williams M, Henkart P (1994) Apoptotic cell death induced by intracellular proteolysis. J Irnmunol 153:4247–4255

    CAS  Google Scholar 

  105. Fernandes-Alnemri T, Litwack G, Alnemri ES (1995) Mch2, a new member of the apoptotic Ced-3/Ice cysteine protease gene family. Cancer Res 55:2737–2742

    CAS  PubMed  Google Scholar 

  106. Fesus L, Davies PJ, Piacentini M (1991) Apoptosis: molecular mechanisms in programmed cell death. Eur J Cell Biol 56:170–177

    CAS  PubMed  Google Scholar 

  107. Kim TK, Eberwine JH (2010) Mammalian cell transfection: the present and the future. Anal Bioanal Chem 397:3173–3178

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Jiang JK, Ma X, Wu QY, Qian WB, Wang N, Shi SS, Han JL, Zhao JY, Jiang SY, Wan CH (2014) Upregulation of mitochondrial protease HtrA2/Omi contributes to manganese-induced neuronal apoptosis in rat brain striatum. Neuroscience 268:169–179

    CAS  PubMed  Google Scholar 

  109. Saraste A, Pulkki K (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 45:528–537

    CAS  PubMed  Google Scholar 

  110. Michalet X, Kapanidis AN, Laurence T, Pinaud F, Doose S, Pflughoefft M, Weiss S (2003) The power and prospects of fluorescence microscopies and spectroscopies. Annu Rev Biophys Biomol Struct 32:161–182

    CAS  PubMed  Google Scholar 

  111. Telford WG, King LE, Fraker PJ (1992) Comparative evaluation of several DNA binding dyes in the detection of apoptosis-associated chromatin degradation by flow cytometry. Cytometry 13:137–143

    CAS  PubMed  Google Scholar 

  112. Whitaker JE, Haugland RP, Moore PL, Hewitt PC, Reese M (1991) Cascade blue derivatives: water soluble, reactive, blue emission dyes evaluated as fluorescent labels and tracers. Anal Biochem 198:119–130

    CAS  PubMed  Google Scholar 

  113. Andree HA, Reutelingsperger CP, Hauptmann R, Hemker HC, Hermens WT, Willems GM (1990) Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers. J Biol Chem 265:4923–4928

    CAS  PubMed  Google Scholar 

  114. Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216

    CAS  PubMed  Google Scholar 

  115. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415–1420

    CAS  PubMed  Google Scholar 

  116. Riccardi C, Nicoletti I (2006) Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 1:1458–1461

    CAS  PubMed  Google Scholar 

  117. Rieger AM, Nelson KL, Konowalchuk JD, Barreda DR (2011) Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp (50). pii: 2597. doi:10.3791/2597

  118. Shapiro HM (2005) Practical flow cytometry. Wiley, New York

    Google Scholar 

  119. Hingorani R, Deng J, Elia J, McIntyre C, Mittar D (2011) Detection of apoptosis using the BD annexin V FITC assay on the BD FACSVerse™ system. BD Biosciences, San Jose, pp 1–12

    Google Scholar 

  120. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    CAS  PubMed  Google Scholar 

  121. Ben-Sasson SA, Sherman Y, Gavrieli Y (1995) Identification of dying cells–in situ staining. Methods Cell Biol 46:29–39

    CAS  PubMed  Google Scholar 

  122. Darzynkiewicz Z (1994) Flow cytometry. Methods Cell Biol 41:27–442

    Google Scholar 

  123. Li X, Traganos F, Melamed MR, Darzynkiewicz Z (1995) Single-step procedure for labeling DNA strand breaks with fluorescein- or BODIPY-conjugated deoxynucleotides: detection of apoptosis and bromodeoxyuridine incorporation. Cytometry 20:172–180

    CAS  PubMed  Google Scholar 

  124. Loo DT (2002) TUNEL assay. An overview of techniques. Methods Mol Biol 203:21–30

    CAS  PubMed  Google Scholar 

  125. Walker PR, Carson C, Leblanc J, Sikorska M (2002) Labeling DNA damage with terminal transferase. Applicability, specificity, and limitations. Methods Mol Biol 203:3–19

    CAS  PubMed  Google Scholar 

  126. Suman S, Pandey A, Chandna S (2012) An improved non-enzymatic “DNA ladder assay” for more sensitive and early detection of apoptosis. Cytotechnology 64:9–14

    PubMed Central  PubMed  Google Scholar 

  127. Zhivotosky B, Orrenius S (2001) Assessment of apoptosis and necrosis by DNA fragmentation and morphological criteria. Curr Protoc Cell Biol, Chapter 18, Unit 18 13

    Google Scholar 

  128. Archana M, Yogesh TL, Kumaraswamy KL (2013) Various methods available for detection of apoptotic cells–a review. Indian J Cancer 50:274–283

    CAS  PubMed  Google Scholar 

  129. Matassov D, Kagan T, Leblanc J, Sikorska M, Zakeri Z (2004) Measurement of apoptosis by DNA fragmentation. Methods Mol Biol 282:1–17

    CAS  PubMed  Google Scholar 

  130. Kasibhatla S, Amarante-Mendes GP, Finucane D, Brunner T, Bossy-Wetzel E, Green DR (2006) Analysis of DNA fragmentation using agarose gel electrophoresis. CSH Protoc 2006

    Google Scholar 

  131. Georgiou CD, Papapostolou I, Grintzalis K (2009) Protocol for the quantitative assessment of DNA concentration and damage (fragmentation and nicks). Nat Protocols 4:125–131

    CAS  PubMed  Google Scholar 

  132. Belfield H, Chikh A, Ramadan S (2005) Apoptosis methods and protocols. Cell Death Differ 12:834–834

    Google Scholar 

  133. Darzynkiewicz Z, Huang X (2004) Analysis of cellular DNA content by flow cytometry. Curr Protoc Immunol, Chapter 5, Unit 5 7

    Google Scholar 

  134. Otto F (1990) DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods Cell Biol 33:105–110

    CAS  PubMed  Google Scholar 

  135. Wang ZB, Liu YQ, Cui YF (2005) Pathways to caspase activation. Cell Biol Int 29:489–496

    CAS  PubMed  Google Scholar 

  136. Lu CX, Fan TJ, Hu GB, Cong RS (2003) Apoptosis-inducing factor and apoptosis. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 35:881–885

    CAS  Google Scholar 

  137. Fan TJ, Han LH, Cong RS, Liang J (2005) Caspase family proteases and apoptosis. Acta Biochim Biophys Sin (Shanghai) 37:719–727

    CAS  Google Scholar 

  138. Niles AL, Moravec RA, Riss TL (2008) Caspase activity assays. Methods Mol Biol 414:137–150

    CAS  PubMed  Google Scholar 

  139. Scholz J, Broom DC, Youn DH, Mills CD, Kohno T, Suter MR, Moore KA, Decosterd I, Coggeshall RE, Woolf CJ (2005) Blocking caspase activity prevents transsynaptic neuronal apoptosis and the loss of inhibition in lamina II of the dorsal horn after peripheral nerve injury. J Neurosci 25:7317–7323

    CAS  PubMed  Google Scholar 

  140. Callus BA, Vaux DL (2006) Caspase inhibitors: viral, cellular and chemical. Cell Death Differ 14:73–78

    PubMed  Google Scholar 

  141. Amstad PA, Yu G, Johnson GL, Lee BW, Dhawan S, Phelps DJ (2001) Detection of caspase activation in situ by fluorochrome-labeled caspase inhibitors. Biotechniques 31:608–610, 612, 614, passim

    Google Scholar 

  142. Preaudat M, Ouled-Diaf J, Alpha-Bazin B, Mathis G, Mitsugi T, Aono Y, Takahashi K, Takemoto H (2002) A homogeneous caspase-3 activity assay using HTRF technology. J Biomol Screen 7:267–274

    CAS  PubMed  Google Scholar 

  143. Butterick TA, Duffy CM, Lee RE, Billington CJ, Kotz CM, Nixon JP. Use of a caspase multiplexing assay to determine apoptosis in a hypothalamic cell model. J Vis Exp (86). doi:10.3791/51305

  144. Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6:99–104

    CAS  PubMed  Google Scholar 

  145. Nestal de Moraes G, Carvalho E, Maia RC, Sternberg C (2011) Immunodetection of caspase-3 by Western blot using glutaraldehyde. Anal Biochem 415:203–205

    CAS  PubMed  Google Scholar 

  146. Mandal D, Mazumder A, Das P, Kundu M, Basu J (2005) Fas-, caspase 8-, and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes. J Biol Chem 280:39460–39467

    CAS  PubMed  Google Scholar 

  147. Bardet P-L, Kolahgar G, Mynett A, Miguel-Aliaga I, Briscoe J, Meier P, Vincent J-P (2008) A fluorescent reporter of caspase activity for live imaging. Proc Natl Acad Sci 105:13901–13905

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Hug H, Los M, Hirt W, Debatin KM (1999) Rhodamine 110-linked amino acids and peptides as substrates to measure caspase activity upon apoptosis induction in intact cells. Biochemistry 38:13906–13911

    CAS  PubMed  Google Scholar 

  149. Darzynkiewicz Z, Bedner E, Smolewski P, Lee BW, Johnson GL (2002) Detection of caspases activation in situ by fluorochrome-labeled inhibitors of caspases (FLICA). Methods Mol Biol 203:289–99

    CAS  PubMed  Google Scholar 

  150. Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA et al (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43

    CAS  PubMed  Google Scholar 

  151. Reyland ME, Anderson SM, Matassa AA, Barzen KA, Quissell DO (1999) Protein kinase C delta is essential for etoposide-induced apoptosis in salivary gland acinar cells. J Biol Chem 274:19115–19123

    CAS  PubMed  Google Scholar 

  152. Li L, Lorenzo PS, Bogi K, Blumberg PM, Yuspa SH (1999) Protein kinase Cdelta targets mitochondria, alters mitochondrial membrane potential, and induces apoptosis in normal and neoplastic keratinocytes when overexpressed by an adenoviral vector. Mol Cell Biol 19:8547–8558

    CAS  PubMed Central  PubMed  Google Scholar 

  153. Bellido T, Huening M, Raval-Pandya M, Manolagas SC, Christakos S (2000) Calbindin-D28k is expressed in osteoblastic cells and suppresses their apoptosis by inhibiting caspase-3 activity. J Biol Chem 275:26328–26332

    CAS  PubMed  Google Scholar 

  154. Han H, Wang H, Long H, Nattel S, Wang Z (2001) Oxidative preconditioning and apoptosis in L-cells. Roles of protein kinase B and mitogen-activated protein kinases. J Biol Chem 276:26357–26364

    CAS  PubMed  Google Scholar 

  155. Namura S, Zhu J, Fink K, Endres M, Srinivasan A, Tomaselli KJ, Yuan J, Moskowitz MA (1998) Activation and cleavage of caspase-3 in apoptosis induced by experimental cerebral ischemia. J Neurosci 18:3659–3668

    CAS  PubMed  Google Scholar 

  156. Porn-Ares MI, Samali A, Orrenius S (1998) Cleavage of the calpain inhibitor, calpastatin, during apoptosis. Cell Death Differ 5:1028–1033

    CAS  PubMed  Google Scholar 

  157. Barreiro-Iglesias A, Shifman MI (2012) Use of fluorochrome-labeled inhibitors of caspases to detect neuronal apoptosis in the whole-mounted lamprey brain after spinal cord injury. Enzyme Res 2012:7

    Google Scholar 

  158. Kumar S, Baglioni C (1991) Protection from tumor necrosis factor-mediated cytolysis by overexpression of plasminogen activator inhibitor type-2. J Biol Chem 266:20960–20964

    CAS  PubMed  Google Scholar 

  159. Miura M, Friedlander RM, Yuan J (1995) Tumor necrosis factor-induced apoptosis is mediated by a CrmA-sensitive cell death pathway. Proc Natl Acad Sci U S A 92:8318–8322

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Strober W (2001) Trypan blue exclusion test of cell viability. Curr Protoc Immunol Appendix 3, Appendix 3B

    Google Scholar 

  161. Avelar-Freitas BA, Almeida VG, Pinto MC, Mourao FA, Massensini AR, Martins-Filho OA, Rocha-Vieira E, Brito-Melo GE (2014) Trypan blue exclusion assay by flow cytometry. Braz J Med Biol Res 47:307–315

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Santiago Y, Chan E, Liu P-Q, Orlando S, Zhang L, Urnov FD, Holmes MC, Guschin D, Waite A, Miller JC, Rebar EJ, Gregory PD, Klug A, Collingwood TN (2008) Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci 105:5809–5814

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Hertzog PJ, Kola I (2001) Overview. Gene knockouts. Methods Mol Biol 158:1–10

    CAS  PubMed  Google Scholar 

  164. Wilson TJ, Kola I (2001) The LoxP/CRE system and genome modification. Methods Mol Biol 158:83–94

    CAS  PubMed  Google Scholar 

  165. Szulc J, Aebischer P (2008) Conditional gene expression and knockdown using lentivirus vectors encoding shRNA. Methods Mol Biol 434:291–309

    CAS  PubMed  Google Scholar 

  166. Hobel S, Aigner A (2010) Polyethylenimine (PEI)/siRNA-mediated gene knockdown in vitro and in vivo. Methods Mol Biol 623:283–297

    PubMed  Google Scholar 

  167. Mocellin S, Provenzano M (2004) RNA interference: learning gene knock-down from cell physiology. J Transl Med 2:39

    PubMed Central  PubMed  Google Scholar 

  168. Hertzog PJ (2001) Isolation of embryonic fibroblasts and their use in the in vitro characterization of gene function. Methods Mol Biol 158:205–15

    CAS  PubMed  Google Scholar 

  169. DeChiara TM (2001) Gene targeting in ES cells. Methods Mol Biol 158:19–45

    CAS  PubMed  Google Scholar 

  170. Tessarollo L (2001) Manipulating mouse embryonic stem cells, pp 47–63

    Google Scholar 

  171. Moore CB, Guthrie EH, Huang MT, Taxman DJ (2010) Short hairpin RNA (shRNA): design, delivery, and assessment of gene knockdown. Methods Mol Biol 629:141–158

    PubMed Central  PubMed  Google Scholar 

  172. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protocols 8:2281–2308

    CAS  PubMed  Google Scholar 

  173. Deveau H, Garneau JE, Moineau S (2010) CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol 64:475–493

    CAS  PubMed  Google Scholar 

  174. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    CAS  PubMed  Google Scholar 

  175. Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF, van der Oost J, Koonin EV (2011) Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477

    CAS  PubMed  Google Scholar 

  176. Tiwari M, Lopez-Cruzan M, Morgan WW, Herman B (2011) Loss of caspase-2-dependent apoptosis induces autophagy after mitochondrial oxidative stress in primary cultures of young adult cortical neurons. J Biol Chem 286:8493–8506

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Sawitzke JA, Thomason LC, Bubunenko M, Li X, Costantino N, Court DL (2013) Recombineering: using drug cassettes to knock out genes in vivo. Methods Enzymol 533:79–102

    CAS  PubMed  Google Scholar 

  178. Malla RR, Gopinath S, Alapati K, Gorantla B, Gondi CS, Rao JS (2012) uPAR and cathepsin B inhibition enhanced radiation-induced apoptosis in gliomainitiating cells. Neuro Oncol 14:745–760

    CAS  PubMed Central  PubMed  Google Scholar 

  179. Zhou Y, Liang S, Williams LR (2002) Markers of poly (ADP-ribose) polymerase activity as correlates of DNA damage. Methods Mol Biol 203:247–55

    CAS  PubMed  Google Scholar 

  180. Whitacre CM, Zborowska E, Willson JK, Berger NA (1999) Detection of poly(ADP-ribose) polymerase cleavage in response to treatment with topoisomerase I inhibitors: a potential surrogate end point to assess treatment effectiveness. Clin Cancer Res 5:665–672

    CAS  PubMed  Google Scholar 

  181. Fischer U, Schulze-Osthoff K (2005) New approaches and therapeutics targeting apoptosis in disease. Pharmacol Rev 57:187–215

    CAS  PubMed  Google Scholar 

  182. Oberholzer C, Oberholzer A, Clare-Salzler M, Moldawer LL (2001) Apoptosis in sepsis: a new target for therapeutic exploration. FASEB J 15:879–892

    CAS  PubMed  Google Scholar 

  183. Cao Y, Mohamedali KA, Marks JW, Cheung LH, Hittelman WN, Rosenblum MG (2013) Construction and characterization of novel, completely human serine protease therapeutics targeting Her2/neu. Mol Cancer Ther 12:979–991

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Drag M, Salvesen GS (2010) Emerging principles in protease-based drug discovery. Nat Rev Drug Discov 9:690–701

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Lopez-Otin C, Bond JS (2008) Proteases: multifunctional enzymes in life and disease. J Biol Chem 283:30433–30437

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Karikari CA, Roy I, Tryggestad E, Feldmann G, Pinilla C, Welsh K, Reed JC, Armour EP, Wong J, Herman J, Rakheja D, Maitra A (2007) Targeting the apoptotic machinery in pancreatic cancers using small-molecule antagonists of the X-linked inhibitor of apoptosis protein. Mol Cancer Ther 6:957–966

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Mahato R, Tai W, Cheng K (2011) Prodrugs for improving tumor targetability and efficiency. Adv Drug Deliv Rev 63:659–670

    CAS  PubMed Central  PubMed  Google Scholar 

  188. Stella VJ (2004) Prodrugs as therapeutics. Expert Opin Ther Pat 14:277–280

    CAS  Google Scholar 

  189. Rautio J, Kumpulainen H, Heimbach T, Oliyai R, Oh D, Jarvinen T, Savolainen J (2008) Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–270

    CAS  PubMed  Google Scholar 

  190. Li C, Yu DF, Newman RA, Cabral F, Stephens LC, Hunter N, Milas L, Wallace S (1998) Complete regression of well-established tumors using a novel water-soluble poly(L-glutamic acid)-paclitaxel conjugate. Cancer Res 58:2404–2409

    CAS  PubMed  Google Scholar 

  191. Roy S, Bayly CI, Gareau Y, Houtzager VM, Kargman S, Keen SL, Rowland K, Seiden IM, Thornberry NA, Nicholson DW (2001) Maintenance of caspase-3 proenzyme dormancy by an intrinsic “safety catch” regulatory tripeptide. Proc Natl Acad Sci U S A 98:6132–6137

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Nguyen JT, Wells JA (2003) Direct activation of the apoptosis machinery as a mechanism to target cancer cells. Proc Natl Acad Sci U S A 100:7533–7538

    CAS  PubMed Central  PubMed  Google Scholar 

  193. Jiang X, Kim HE, Shu H, Zhao Y, Zhang H, Kofron J, Donnelly J, Burns D, Ng SC, Rosenberg S, Wang X (2003) Distinctive roles of PHAP proteins and prothymosin-alpha in a death regulatory pathway. Science 299:223–226

    CAS  PubMed  Google Scholar 

  194. Vocero-Akbani AM, Heyden NV, Lissy NA, Ratner L, Dowdy SF (1999) Killing HIV-infected cells by transduction with an HIV protease-activated caspase-3 protein. Nat Med 5:29–33

    CAS  PubMed  Google Scholar 

  195. Jang B, Choi Y (2012) Photosensitizer-conjugated gold nanorods for enzyme-activatable fluorescence imaging and photodynamic therapy. Theranostics 2:190–197

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Kim GB, Kim YP (2012) Analysis of protease activity using quantum dots and resonance energy transfer. Theranostics 2:127–138

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Yhee JY, Kim SA, Koo H, Son S, Ryu JH, Youn IC, Choi K, Kwon IC, Kim K (2012) Optical imaging of cancer-related proteases using near-infrared fluorescence matrix metalloproteinase-sensitive and cathepsin B-sensitive probes. Theranostics 2:179–189

    CAS  PubMed Central  PubMed  Google Scholar 

  198. Lee S, Kim K (2012) Protease activity: meeting its theranostic potential. Theranostics 2:125–126

    PubMed Central  PubMed  Google Scholar 

  199. Jokerst JV, Raamanathan A, Christodoulides N, Floriano PN, Pollard AA, Simmons GW, Wong J, Gage C, Furmaga WB, Redding SW, McDevitt JT (2009) Nano-bio-chips for high performance multiplexed protein detection: determinations of cancer biomarkers in serum and saliva using quantum dot bioconjugate labels. Biosens Bioelectron 24:3622–3629

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Hu M, Yan J, He Y, Lu H, Weng L, Song S, Fan C, Wang L (2010) Ultrasensitive, multiplexed detection of cancer biomarkers directly in serum by using a quantum dot-based microfluidic protein chip. ACS Nano 4:488–494

    CAS  PubMed  Google Scholar 

  201. Zajac A, Song D, Qian W, Zhukov T (2007) Protein microarrays and quantum dot probes for early cancer detection. Colloids Surf B: Biointerfaces 58:309–314

    CAS  PubMed  Google Scholar 

  202. He H, Xie C, Ren J (2008) Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging. Anal Chem 80:5951–5957

    CAS  PubMed  Google Scholar 

  203. Swierczewska M, Lee S, Chen X (2011) The design and application of fluorophore-gold nanoparticle activatable probes. Phys Chem Chem Phys 13:9929–9941

    CAS  PubMed Central  PubMed  Google Scholar 

  204. Richard JA, Jean L, Schenkels C, Massonneau M, Romieu A, Renard PY (2009) Self-cleavable chemiluminescent probes suitable for protease sensing. Org Biomol Chem 7:2941–2957

    CAS  PubMed  Google Scholar 

  205. Giron P, Dayon L, Turck N, Hoogland C, Sanchez JC (2011) Quantitative analysis of human cerebrospinal fluid proteins using a combination of cysteine tagging and amine-reactive isobaric labeling. J Proteome Res 10:249–258

    CAS  PubMed  Google Scholar 

  206. Simon GM, Cravatt BF (2010) Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study. J Biol Chem 285:11051–11055

    CAS  PubMed Central  PubMed  Google Scholar 

  207. Berger AB, Vitorino PM, Bogyo M (2004) Activity-based protein profiling: applications to biomarker discovery, in vivo imaging and drug discovery. Am J Pharmacogenomics 4:371–381

    CAS  PubMed  Google Scholar 

  208. Li Q, Yi L, Marek P, Iverson BL (2013) Commercial proteases: present and future. FEBS Lett 587:1155–1163

    CAS  PubMed  Google Scholar 

  209. Pogson M, Georgiou G, Iverson BL (2009) Engineering next generation proteases. Curr Opin Biotechnol 20:390–397

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kakoli Bose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Acharya, S., Kuppili, R.R., Chaganti, L.K., Bose, K. (2015). Proteases in Apoptosis: Protocols and Methods. In: Bose, K. (eds) Proteases in Apoptosis: Pathways, Protocols and Translational Advances. Springer, Cham. https://doi.org/10.1007/978-3-319-19497-4_5

Download citation

Publish with us

Policies and ethics