Advertisement

Exercises

  • Ihsen Yengui
Part of the Lecture Notes in Mathematics book series (LNM, volume 2138)

Abstract

Exercise 372. Prove constructively that a valuation domain has Krull dimension ≤ 1 if and only if its valuation group is archimedean.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1]
    Abedelfatah, A.: On stably free modules over Laurent polynomial rings. Proc. Am. Math. Soc. 139, 4199–4206 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Abedelfatah, A.: On the action of the elementary group on the unimodular rows. J. Algebra 368, 300–304 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    Adams, W.W., Loustaunau, P.: An Introduction to Gröbner Bases. Graduate Studies in Mathematics, vol. 3. American Mathematical Society, Providence (1994)Google Scholar
  4. [4]
    Amidou, M., Yengui, I.: An algorithm for unimodular completion over Laurent polynomial rings. Linear Algebra Appl. 429, 1687–1698 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Arnold, E.A.: Modular algorithms for computing Gröbner bases. J. Symb. Comput. 35, 403–419 (2003)zbMATHCrossRefGoogle Scholar
  6. [6]
    Aschenbrenner, M.: Ideal membership in polynomial rings over the integers. J. Am. Math. Soc. 17, 407–441 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    Ayoub, C.: On constructing bases for ideals in polynomial rings over the integers. J. Number Theory 17(2), 204–225 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    Barhoumi, S.: Seminormality and polynomial ring. J. Algebra 322, 1974–1978 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    Barhoumi, S., Lombardi, H.: An algorithm for the Traverso-Swan theorem over seminormal rings. J. Algebra 320, 1531–1542 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    Barhoumi, S., Yengui, I.: On a localization of the Laurent polynomial ring. JP. J. Algebra Number Theory Appl. 5(3), 591–602 (2005)MathSciNetzbMATHGoogle Scholar
  11. [11]
    Barhoumi, S., Lombardi, H., Yengui, I.: Projective modules over polynomial rings: a constructive approach. Math. Nach 282, 792–799 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Bass, H.: Algebraic K-Theory. W.A. Benjamin Inc., New York/Amsterdam (1968)zbMATHGoogle Scholar
  13. [13]
    Bass, H.: Libération des modules projectifs sur certains anneaux de polynômes, Sém. Bourbaki 1973/74, exp. 448. Lecture Notes in Mathematics, vol. 431, pp. 228–254. Springer, Berlin/ New York (1975)Google Scholar
  14. [14]
    Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry. Algorithms and Computation in Mathematics, 2nd edn. Springer, Berlin (2006)Google Scholar
  15. [15]
    Bayer, D.: The division algorithm and the Hilbert scheme. Ph.D. dissertation, Harvard University (1982)Google Scholar
  16. [16]
    Bernstein, D.: Fast ideal arithmetic via lazy localization. In: Cohen, H. (ed.) Algorithmic Number Theory. Proceeding of the Second International Symposium, ANTS-II, Talence, France, 18–23 May 1996. Lecture Notes in Computer Science, vol. 1122, pp. 27–34. Springer, Berlin (1996)Google Scholar
  17. [17]
    Bernstein, D.: Factoring into coprimes in essentially linear time. J. Algorithms 54, 1–30 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Boileau, A., Joyal, A.: La Logique des Topos. J. Symb. Log. 46, 6–16 (1981)MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    Bourbaki, N.: Algèbre Commutative. Chapitres 5–6. Masson, Paris (1985)Google Scholar
  20. [20]
    Brewer, J., Costa, D.: Projective modules over some non-Noetherian polynomial rings. J. Pure Appl. Algebra 13, 157–163 (1978)MathSciNetCrossRefGoogle Scholar
  21. [21]
    Brickenstein, M., Dreyer, A., Greuel, G.-M., Wedler, M., Wienand, O.: New developments in the theory of Groebner bases and applications to formal verification. J. Pure Appl. Algebra 213, 1612–1635 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen polynomideal. Ph.D. thesis, University of Innsbruck (1965)Google Scholar
  23. [23]
    Buchberger, B.: A critical pair/completion algorithm for finitely-generated ideals in rings. In: Logic and Machines: Decision Problems and Complexity. Springer Lectures Notes in Computer Science, vol. 171, pp. 137–161. Springer, New York (1984)Google Scholar
  24. [24]
    Buchmann, J., Lenstra, H.: Approximating rings of integers in number fields. J. Théor. Nombres Bordeaux 6(2), 221–260 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  25. [25]
    Byrne, E., Fitzpatrick, P.: Gröbner bases over Galois rings with an application to decoding alternant codes. J. Symb. Comput. 31, 565–584 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    Cahen, P.-J.: Construction B,I,D et anneaux localement ou résiduellement de Jaffard. Archiv. Math. 54, 125–141 (1990)Google Scholar
  27. [27]
    Cahen, P.-J., Elkhayyari, Z., Kabbaj, S.: Krull and valuative dimension of the Serre conjecture ring \(R\langle n\rangle\). In: Commutative Ring Theory. Lecture Notes in Pure and Applied Mathematics, vol. 185, pp. 173–180. Marcel Dekker, New York (1997)Google Scholar
  28. [28]
    Cai, Y., Kapur, D.: An algorithm for computing a Gröbner basis of a polynomial ideal over a ring with zero divisors. Math. Comput. Sci. 2, 601–634 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    Caniglia, L., Cortiñas, G., Danón, S., Heintz, J., Krick, T., Solernó, P.: Algorithmic aspects of Suslin’s proof of Serre’s conjecture. Comput. Complex. 3, 31–55 (1993)zbMATHCrossRefGoogle Scholar
  30. [30]
    Cohn, P.M.: On the structure of GLn of a ring. Publ. Math. I.H.E.S. 30, 5–54 (1966)Google Scholar
  31. [31]
    Coquand, T.: Sur un théorème de Kronecker concernant les variétés algébriques. C. R. Acad. Sci. Paris, Ser. I 338, 291–294 (2004)MathSciNetzbMATHGoogle Scholar
  32. [32]
    Coquand, T.: On seminormality. J. Algebra 305, 577–584 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    Coquand, T.: A refinement of Forster’s theorem. Preprint (2007)Google Scholar
  34. [34]
    Coquand, T., Lombardi, H.: Hidden constructions in abstract algebra (3) Krull dimension of distributive lattices and commutative rings. In: Fontana, M., Kabbaj, S.-E., Wiegand, S. (eds.) Commutative Ring Theory and Applications. Lecture Notes in Pure and Applied Mathematics, vol. 131, pp. 477–499. Marcel Dekker, New York (2002)Google Scholar
  35. [35]
    Coquand, T., Lombardi, H.: A short proof for the Krull dimension of a polynomial ring. Am. Math. Mon. 112, 826–829 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  36. [36]
    Coquand, T., Quitté, C.: Constructive finite free resolutions. Manuscripta Math. 137, 331–345 (2011)CrossRefGoogle Scholar
  37. [37]
    Coquand, T., Ducos, L., Lombardi, H., Quitté, C.: L’idéal des coefficients du produit de deux polynômes. Rev. Math. Enseign. Supér. 113, 25–39 (2003)Google Scholar
  38. [38]
    Coquand, T., Lombardi, H., Quitté, C.: Generating nonnoetherian modules constructively. Manuscripta Math. 115, 513–520 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    Coquand, T., Lombardi, H., Roy, M.-F.: An elementary characterisation of Krull dimension. In: Corsilla, L., Schuster, P. (eds.) From Sets and Types to Analysis and Topology: Towards Practicable Foundations for Constructive Mathematics. Oxford University Press, Oxford (2005)Google Scholar
  40. [40]
    Coquand, T., Lombardi, H., Schuster, P.: A nilregular element property. Arch. Math. 85, 49–54 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    Coquand, T., Lombardi, H., Schuster, P.: The projective spectrum as a distributive lattice. Cahiers de Topologie et Géométrie différentielle catégoriques 48, 220–228 (2007)MathSciNetzbMATHGoogle Scholar
  42. [42]
    Coste, M., Lombardi, H., Roy, M.-F.: Dynamical method in algebra: effective Nullstellensätze. Ann. Pure Appl. Logic 111, 203–256 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms, 2nd edn. Springer, New York (1997)Google Scholar
  44. [44]
    Decker, W., Greuel, G.-M., Pfister, G., Schönemann, H.: SINGULAR 4-0-2 – A Computer Algebra System for Polynomial Computations. http://www.singular.uni-kl.de (2015)
  45. [45]
    Decker, W., Pfister, G.: A First Course in Computational Algebraic Geometry. AIMS Library Series. Cambridge University Press, Cambridge (2013)zbMATHCrossRefGoogle Scholar
  46. [46]
    Della Dora, J., Dicrescenzo, C., Duval, D.: About a new method for computing in algebraic number fields. In: Caviness, B.F. (ed.) EUROCAL ’85. Lecture Notes in Computer Science, vol. 204, pp. 289–290. Springer, Berlin (1985)Google Scholar
  47. [47]
    Diaz-Toca, G.M., Lombardi, H.: Dynamic Galois theory. J. Symb. Comput. 45, 1316–1329 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    Ducos, L., Monceur, S., Yengui, I.: Computing the V-saturation of finitely-generated submodules of V[X]m where V is a valuation domain. J. Symb. Comput. 72, 196–205 (2016)MathSciNetCrossRefGoogle Scholar
  49. [49]
    Ducos, L., Quitté, C., Lombardi, H., Salou, M.: Théorie algorithmique des anneaux arithmétiques, de Prüfer et de Dedekind. J. Algebra 281, 604–650 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  50. [50]
    Ducos, L., Valibouze, A., Yengui, I.: Computing syzygies over V[X 1, , X k], V a valuation domain. J. Algebra 425, 133–145 (2015)Google Scholar
  51. [51]
    Duval, D., Reynaud, J.-C.: Sketches and computation (part II) dynamic evaluation and applications. Math. Struct. Comput. Sci. 4, 239–271 (1994) (see http://www.Imc.imag.fr/Imc-cf/Dominique.Duval/evdyn.html)
  52. [52]
    Edwards, H.: Divisor Theory. Birkhäuser, Boston (1989)Google Scholar
  53. [53]
    Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Springer, New York (1995)zbMATHGoogle Scholar
  54. [54]
    Ebert, G.L.: Some comments on the modular approach to Gröbner-bases. ACM SIGSAM Bull. 17, 28–32 (1983)zbMATHCrossRefGoogle Scholar
  55. [55]
    Ellouz, A., Lombardi, H., Yengui, I.: A constructive comparison of the rings R(X) and \(\mathbf{R}\langle X\rangle\) and application to the Lequain-Simis induction theorem. J. Algebra 320, 521–533 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  56. [56]
    Español, L.: Dimensión en álgebra constructiva. Doctoral thesis, Universidad de Zaragoza, Zaragoza (1978)Google Scholar
  57. [57]
    Español, L.: Constructive Krull dimension of lattices. Rev. Acad. Cienc. Zaragoza 37, 5–9 (1982)MathSciNetzbMATHGoogle Scholar
  58. [58]
    Español, L.: Le spectre d’un anneau dans l’algèbre constructive et applications à la dimension. Cahiers de topologie et géométrie différentielle catégorique 24, 133–144 (1983)zbMATHGoogle Scholar
  59. [59]
    Español, L.: Dimension of Boolean valued lattices and rings. J. Pure Appl. Algebra 42, 223–236 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  60. [60]
    Español, L.: Finite chain calculus in distributive lattices and elementary Krull dimension. In: Lamban, L., Romero, A., Rubio, J. (eds.) Contribuciones cientificas en honor de Mirian Andres Gomez Servicio de Publicaciones. Universidad de La Rioja, Logroño (2010)Google Scholar
  61. [61]
    Fabiańska, A.: A Maple QuillenSuslin package. http://wwwb.math.rwth-aachen.de/QuillenSuslin/ (2007)
  62. [62]
    Fabiańska, A., Quadrat, A.: Applications of the Quillen-Suslin theorem to the multidimensional systems theory. INRIA Report 6126 (2007), Published in Gröbner Bases in Control Theory and Signal Processing. In: Park, H., Regensburger, G. (eds.) Radon Series on Computation and Applied Mathematics, vol. 3, pp. 23–106. de Gruyter, Berlin (2007)Google Scholar
  63. [63]
    Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F 5). In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC (2002)CrossRefGoogle Scholar
  64. [64]
    Fitchas, N., Galligo, A.: Nullstellensatz effectif et conjecture de Serre (Théorème de Quillen-Suslin) pour le calcul formel. Math. Nachr. 149, 231–253 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  65. [65]
    Gallo, S., Mishra, B.: A solution to Kronecker’s problem. Appl. Algebra Eng. Commun. Comput. 5, 343–370 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  66. [66]
    Gilmer, R.: Multiplicative Ideal Theory. Queens Paper in Pure and Applied Mathematics, vol. 90. Marcel Dekker, New York (1992)Google Scholar
  67. [67]
    Glaz, S.: On the weak dimension of coherent group rings. Commun. Algebra 15, 1841–1858 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  68. [68]
    Glaz, S.: Commutative Coherent Rings. Lectures Notes in Mathematics, vol. 1371, 2nd edn. Springer, Berlin/Heidelberg/New York (1990)Google Scholar
  69. [69]
    Glaz, S.: Finite conductor properties of R(X) and \(\,\mathbf{R}\langle X\rangle\). In: Ideal Theoretic Methods in Commutative Algebra (Columbia, MO, 1999). Lecture Notes in Pure and Applied Mathematics, vol. 220, pp. 231–249. Marcel Dekker, New York (2001)Google Scholar
  70. [70]
    Glaz, S., Vasconcelos, W.V.: Flat ideals III. Commun. Algebra 12, 199–227 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  71. [71]
    Gräbe, H.: On lucky primes. J. Symb. Comput. 15, 199–209 (1994)CrossRefGoogle Scholar
  72. [72]
    Grayson, D.R., Stillman, M.E.: Macaulay2, A Software System for Research in Algebraic Geometry. Available at http://www.math.uiuc.edu/Macaulay2/
  73. [73]
    Greuel, G.M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer, Berlin/Heidelberg/New York (2002)zbMATHCrossRefGoogle Scholar
  74. [74]
    Greuel, G.-M., Seelisch, F., Wienand, O.: The Gröbner basis of the ideal of vanishing polynomials. J. Symb. Comput. 46, 561–570 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  75. [75]
    Gruson, L., Raynaud, M.: Critères de platitude et de projectivité. Techniques de “platification” d’un module. Invent. Math. 13, 1–89 (1971)Google Scholar
  76. [76]
    Gupta, S.K., Murthy, M.P.: Suslin’S Work on Linear Groups over Polynomial Rings and Serre Problem. Indian Statistical Institute Lecture Notes Series, vol. 8. Macmillan, New Delhi (1980)Google Scholar
  77. [77]
    Hadj Kacem, A., Yengui, I.: Dynamical Gröbner bases over Dedekind rings. J. Algebra 324, 12–24 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  78. [78]
    Havas, G., Majewski B.S.: Extended gcd calculation. In: Proceedings of the Twenty-sixth Southeastern International Conference on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1995). Congr. Numer. 111, 104–114 (1995)Google Scholar
  79. [79]
    Heinzer, W., Papick, I.J.: Remarks on a remark of Kaplansky. Proc. Am. Math. Soc. 105, 1–9 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  80. [80]
    Huckaba, J.: Commutative Rings with Zero-Divisors. Marcel Dekker, New York (1988)zbMATHGoogle Scholar
  81. [81]
    Hurwitz, A.: Ueber einen Fundamentalsatz der arithmetischen Theorie der algebraischen Größen, pp. 230–240. Nachr. kön Ges. Wiss., Göttingen (1895) [Werke, vol. 2, pp. 198–207]Google Scholar
  82. [82]
    Jambor, S.: Computing minimal associated primes in polynomial rings over the integers. J. Symb. Comput. 46, 1098–1104 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  83. [83]
    Joyal, A.: Spectral spaces and distibutive lattices. Not. Am. Math. Soc. 18, 393 (1971)Google Scholar
  84. [84]
    Joyal, A.: Le théorème de Chevalley-Tarski. Cahiers de Topologie et Géomérie Différentielle 16, 256–258 (1975)Google Scholar
  85. [85]
    Kapur, D., Narendran, P.: An equational approach to theoretical proving in first-order predicate calculus. In: Proceedings of the International Joint Conference on Artificial Intelligence, IJCAI, pp. 1146–1153 (1985)Google Scholar
  86. [86]
    Kandry-Rody, A., Kapur, D.: Computing a Gröbner basis of a polynomial ideal over a euclidean domain. J. Symb. Comput. 6, 37–57 (1988)CrossRefGoogle Scholar
  87. [87]
    Kemper, G.: A Course in Commutative Algebra. Graduate Texts in Mathematics. Springer, Berlin (2011)zbMATHCrossRefGoogle Scholar
  88. [88]
    Kreuzer, M., Robbianno, L.: Computational Commutative Algebra, vol. 2. Springer, Berlin (2005)zbMATHGoogle Scholar
  89. [89]
    Kronecker, L.: Zur Theorie der Formen höherer Stufen Ber, pp. 957–960. K. Akad. Wiss. Berlin (1883) [Werke 2, 417–424]Google Scholar
  90. [90]
    Kunz, E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser, Basel (1991)Google Scholar
  91. [91]
    Lam, T.Y.: Serre’s Conjecture. Lecture Notes in Mathematics, vol. 635. Springer, Berlin/ New York (1978)Google Scholar
  92. [92]
    Lam, T.Y.: Serre’s Problem on Projective Modules. Springer Monographs in Mathematics. Springer, Berlin (2006)CrossRefGoogle Scholar
  93. [93]
    Laubenbacher, R.C., Woodburn, C.J.: An algorithm for the Quillen-Suslin theorem for monoid rings. J. Pure Appl. Algebra 117/118, 395–429 (1997)Google Scholar
  94. [94]
    Laubenbacher, R.C., Woodburn, C.J.: A new algorithm for the Quillen-Suslin theorem. Beiträge Algebra Geom. 41, 23–31 (2000)MathSciNetzbMATHGoogle Scholar
  95. [95]
    Lenstra, A.K., Lenstra, Jr. H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  96. [96]
    Lequain, Y., Simis, A.: Projective modules over R[X 1, , X n], R a Prüfer domain. J. Pure Appl. Algebra 18(2), 165–171 (1980)Google Scholar
  97. [97]
    Logar, A., Sturmfels, B.: Algorithms for the Quillen-Suslin theorem. J. Algebra 145(1), 231–239 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  98. [98]
    Lombardi, H.: Le contenu constructif d’un principe local-global avec une application à la structure d’un module projectif de type fini. Publications Mathématiques de Besançon. Théorie des nombres (1997)Google Scholar
  99. [99]
    Lombardi, H.: Relecture constructive de la théorie d’Artin-Schreier. Ann. Pure Appl. Logic 91, 59–92 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  100. [100]
    Lombardi, H.: Dimension de Krull, Nullstellensätze et Évaluation dynamique. Math. Z. 242, 23–46 (2002)MathSciNetzbMATHGoogle Scholar
  101. [101]
    Lombardi, H.: Platitude, localisation et anneaux de Prüfer, une approche constructive. Publications Mathématiques de Besançon. Théorie des nombres. Années 1998–2001Google Scholar
  102. [102]
    Lombardi, H.: Hidden constructions in abstract algebra (1) integral dependance relations. J. Pure Appl. Algebra 167, 259–267 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  103. [103]
    Lombardi, H.: Constructions cachées en algèbre abstraite (4) La solution du 17ème problème de Hilbert par la théorie d’Artin-Schreier. Publications Mathématiques de Besançon. Théorie des nombres. Années 1998–2001Google Scholar
  104. [104]
    Lombardi, H.: Constructions cachées en algèbre abstraite (5) Principe local-global de Pfister et variantes. Int. J. Commut. Rings 2(4), 157–176 (2003)MathSciNetzbMATHGoogle Scholar
  105. [105]
    Lombardi, H., Perdry, H.: The Buchberger algorithm as a tool for ideal theory of polynomial rings in constructive mathematics. In: Gröbner Bases and Applications (Proceedings of the Conference 33 Years of Gröbner Bases). Mathematical Society Lecture Notes Series, vol. 251, pp. 393–407. Cambridge University Press, London (1998)Google Scholar
  106. [106]
    Lombardi, H., Quitté, C.: Constructions cachées en algèbre abstraite (2) Le principe local-global. In: Fontana, M., Kabbaj, S.-E., Wiegand, S. (eds.) Commutative Ring Theory and Applications. Lecture Notes in Pure and Applied Mathematics, vol. 131, pp. 461–476. Marcel Dekker, New York (2002)Google Scholar
  107. [107]
    Lombardi, H., Quitté, C.: Seminormal rings (following Thierry Coquand). Theor. Comput. Sci. 392, 113–127 (2008)zbMATHCrossRefGoogle Scholar
  108. [108]
    Lombardi, H., Quitté, C.: Algèbre Commutative. Méthodes Constructives. Modules projectifs de type fini. Cours et exercices. Calvage et Mounet, Paris (2011)zbMATHGoogle Scholar
  109. [109]
    Lombardi, H., Quitté, C.: Commutative Algebra. Constructive Methods. Finite Projective Modules. Springer, New York (2015)Google Scholar
  110. [110]
    Lombardi, H., Yengui, I.: Suslin’s algorithms for reduction of unimodular rows. J. Symb. Comput. 39, 707–717 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  111. [111]
    Lombardi H., Quitté C., Diaz-Toca G. M., Modules sur les anneaux commutatifs. Cours et exercices. Calvage et Mounet, 2014.Google Scholar
  112. [112]
    Lombardi, H., Quitté, C., Yengui, I.: Hidden constructions in abstract algebra (6) The theorem of Maroscia, Brewer and Costa. J. Pure Appl. Algebra 212, 1575–1582 (2008)zbMATHCrossRefGoogle Scholar
  113. [113]
    Lombardi, H., Quitté, C., Yengui, I.: Un algorithme pour le calcul des syzygies sur V[X] dans le cas où V est un domaine de valuation. Commun. Algebra 42(9), 3768–3781 (2014)zbMATHCrossRefGoogle Scholar
  114. [114]
    Lombardi, H., Schuster, P., Yengui, I.: The Gröbner ring conjecture in one variable. Math. Z. 270, 1181–1185 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  115. [115]
    Macaulay2. A Quillen-Suslin package. http://wiki.macaulay2.com/Macaulay2/index.php?title=Quillen-Suslin (2011)
  116. [116]
    Magma (Computational Algebra Group within School of Maths and Statistics of University of Sydney). http://magma.maths.usyd.edu.au/magma (2010)
  117. [117]
    Maroscia, P.: Modules projectifs sur certains anneaux de polynomes. C. R. Acad. Sci. Paris Sér. A 285, 183–185 (1977)MathSciNetzbMATHGoogle Scholar
  118. [118]
    Mialebama Bouesso, A., Sow, D.: Non commutative Gröbner bases over rings. Commun. Algebra 43(2), 541–557 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  119. [119]
    Mialebama Bouesso, A., Valibouze, A., Yengui, I.: Gröbner bases over \(\mathbb{Z}/p^{\alpha }\mathbb{Z}\), \(\mathbb{Z}/m\mathbb{Z}\), \((\mathbb{Z}/p^{\alpha }\mathbb{Z}) \times (\mathbb{Z}/p^{\alpha }\mathbb{Z})\), \(\mathbb{F}_{2}[a,b]/\langle a^{2} - a,b^{2} - b\rangle\), and \(\mathbb{Z}\) as special cases of dynamical Gröbner bases. Preprint (2012)Google Scholar
  120. [120]
    Mines, R., Richman, F., Ruitenburg, W.: A Course in Constructive Algebra. Universitext. Springer, Heidelberg (1988)zbMATHCrossRefGoogle Scholar
  121. [121]
    Mnif, A., Yengui, I.: An algorithm for unimodular completion over Noetherian rings. J. Algebra 316, 483–498 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  122. [122]
    Möller, M., Mora, T.: New constructive methods in classical ideal theory. J. Algebra 100, 138–178 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  123. [123]
    Monceur, S., Yengui, I.: On the leading terms ideals of polynomial ideals over a valuation ring. J. Algebra 351, 382–389 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  124. [124]
    Monceur, S., Yengui, I.: Suslin’s lemma for rings containing an infinite field. Colloq. Math. (in press)Google Scholar
  125. [125]
    Mora, T.: Solving Polynomial Equation Systems I: The Kronecker-Duval Philosophy. Cambridge University Press, Cambridge (2003)CrossRefGoogle Scholar
  126. [126]
    Northcott, D.G.: Finite Free Resolutions. Cambridge University Press, Cambridge (1976)zbMATHCrossRefGoogle Scholar
  127. [127]
    Norton, G.H., Salagean, A.: Strong Gröbner bases and cyclic codes over a finite-chain ring. Appl. Algebra Eng. Commun. Comput. 10, 489–506 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  128. [128]
    Norton, G.H., Salagean, A.: Strong Gröbner bases for polynomials over a principal ideal ring. Bull. Aust. Math. Soc. 64, 505–528 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  129. [129]
    Norton, G.H., Salagean, A.: Gröbner bases and products of coefficient rings. Bull. Aust. Math. Soc. 65, 145–152 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  130. [130]
    Norton, G.H., Salagean, A.: Cyclic codes and minimal strong Gröbner bases over a principal ideal ring. Finite Fields Appl. 9, 237–249 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  131. [131]
    Park, H.: A computational theory of Laurent polynomial rings and multidimensional FIR systems. University of Berkeley (1995)Google Scholar
  132. [133]
    Park, H.: Symbolic computations and signal processing. J. Symb. Comput. 37, 209–226 (2004)zbMATHCrossRefGoogle Scholar
  133. [134]
    Park, H.: Generalizations and variations of Quillen-Suslin theorem and their applications. In: Work-shop Grb̈ner Bases in Control Theory and Signal Processing. Special Semester on Grb̈ner Bases and Related Methods 2006, University of Linz, Linz, 19 May 2006Google Scholar
  134. [135]
    Park, H., Woodburn, C.: An algorithmic proof of Suslin’s stability theorem for polynomial rings. J. Algebra 178, 277–298 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  135. [136]
    Pauer, F.: On lucky ideals for Gröbner basis computations. J. Symb. Comput. 14, 471–482 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  136. [137]
    Pauer, F.: Gröbner bases with coefficients in rings. J. Symb. Comput. 42, 1003–1011 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  137. [138]
    Perdry, H.: Lazy bases: a minimalist constructive theory of Noetherian rings. MLQ Math. Log. Q. 54, 70–82 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  138. [139]
    Perdry, H.: Strongly Noetherian rings and constructive ideal theory. J. Symb. Comput. 37, 511–535 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  139. [140]
    Perdry, H., Schuster, P.: Noetherian orders. Math. Struct. Comput. Sci. 24(2), 29 (2014)MathSciNetGoogle Scholar
  140. [141]
    Perdry, H., Schuster, P.: Constructing Gröbner bases for Noetherian rings. Math. Struct. Comput. Sci. 21, 111–124 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  141. [142]
    Pola, E., Yengui, I.: A negative answer to a question about leading terms ideals of polynomial ideals. J. Pure Appl. Algebra 216, 2432–2435 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  142. [143]
    Pola, E., Yengui, I.: Gröbner rings. Acta Sci. Math. (Szeged) 80, 363–372 (2014)Google Scholar
  143. [144]
    Preira, J.-M., Sow, D., Yengui, I.: On Polly Cracker over valuation rings and \(\mathbb{Z}_{n}\). Preprint (2010)Google Scholar
  144. [145]
    Quillen, D.: Projective modules over polynomial rings. Invent. Math. 36, 167–171 (1976)MathSciNetzbMATHCrossRefGoogle Scholar
  145. [146]
    Rao, R.A.: The Bass-Quillen conjecture in dimension three but characteristic ≠ 2, 3 via a question of A. Suslin. Invent. Math. 93, 609–618 (1988)Google Scholar
  146. [147]
    Rao, R.A., Swan, R.: A regenerative property of a fibre of invertible alternating polynomial matrices (in preparation)Google Scholar
  147. [148]
    Raynaud, M.: Anneaux Locaux Henséliens. Lectures Notes in Mathematics, vol. 169. Springer, Berlin/Heidelberg/New York (1970)Google Scholar
  148. [149]
    Richman, F.: Constructive aspects of Noetherian rings. Proc. Am. Mat. Soc. 44, 436–441 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  149. [150]
    Richman, F.: Nontrivial use of trivial rings. Proc. Am. Mat. Soc. 103, 1012–1014 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  150. [151]
    Roitman, M.: On projective modules over polynomial rings. J. Algebra 58, 51–63 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  151. [152]
    Roitman, M.: On stably extended projective modules over polynomial rings. Proc. Am. Math. Soc. 97, 585–589 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  152. [153]
    Rosenberg, J.: Algebraic K-Theory and Its Applications. Graduate Texts in Mathematics. Springer, New York (1994)zbMATHCrossRefGoogle Scholar
  153. [154]
    Sasaki, T., Takeshima, T.: A modular method for Gröbner-basis construction over \(\mathbb{Q}\) and solving system of algebraic equations. J. Inform. Process. 12, 371–379 (1989)MathSciNetzbMATHGoogle Scholar
  154. [155]
    Schreyer, F.-O.: Syzygies of canonical curves and special linear series. Math. Ann. 275(1), 105–137 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  155. [156]
    Schreyer, F.-O.: A standard basis approach to Syzygies of canonical curves. J. Reine Angew. Math. 421, 83–123 (1991)MathSciNetzbMATHGoogle Scholar
  156. [157]
    Schuster, P.: Induction in algebra: a first case study. In: 2012 27th Annual ACM/IEEE Symposium on Logic in Computer Science, Proceedings LICS 2012, pp. 581–585. IEEE Computer Society Publications, Dubrovnik (June 2012)Google Scholar
  157. [158]
    Schuster, P.: Induction in algebra: a first case study. Log. Methods Comput. Sci. 9(3), 19 (2013)CrossRefGoogle Scholar
  158. [159]
    Seindeberg, A.: What is Noetherian? Rend. Sem. Mat. Fis. Milano 44, 55–61 (1974)MathSciNetCrossRefGoogle Scholar
  159. [160]
    Serre, J.-P.: Faisceaux algébriques cohérents. Ann. Math. 61, 191–278 (1955)CrossRefGoogle Scholar
  160. [161]
    Serre, J.-P.: Modules projectifs et espaces fibrés à fibre vectorielle. Sém. Dubreil-Pisot, no. 23, Paris (1957/1958)Google Scholar
  161. [162]
    Shekhar, N., Kalla, P., Enescu, F., Gopalakrishnan, S.: Equivalence verification of polynomial datapaths with fixed-size bit-vectors using finite ring algebra. In: ICCAD ’05: Proceedings of the 2005 IEEE/ACM International Conference on Computer-Aided Design, pp. 291–296. IEEE Computer Society, Washington, DC (2005)Google Scholar
  162. [163]
    Simis, A., Vasconcelos, W.: Projective modules over R[X], R a valuation ring are free. Not. Am. Math. Soc. 18(5), 944 (1971)Google Scholar
  163. [164]
    Suslin, A.A.: Projective modules over a polynomial ring are free. Sov. Math. Dokl. 17, 1160–1164 (1976)zbMATHGoogle Scholar
  164. [165]
    Suslin, A.A.: On the structure of the special linear group over polynomial rings. Math. USSR-Izv. 11, 221–238 (1977)zbMATHCrossRefGoogle Scholar
  165. [166]
    Suslin, A.A.: On stably free modules. Mat. Sb. (N.S.), 102(144)(4), 537–550 (1977)Google Scholar
  166. [167]
    Swan, R.: On seminormality. J. Algebra 67, 210–229 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  167. [168]
    Traverso, C.: Seminormality and the Picard group. Ann. Scuola Norm. Sup. Pisa 24, 585–595 (1970)MathSciNetzbMATHGoogle Scholar
  168. [169]
    Traverso, C.: Gröbner Trace Algorithms. In: Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC ’88. Lecture Notes in Computer Science, vol. 358, pp. 125–138 (1988)MathSciNetCrossRefGoogle Scholar
  169. [170]
    Traverso, C.: Hilbert functions and the Buchberger’s algorithm. J. Symb. Comput. 22, 355–376 (1997)MathSciNetCrossRefGoogle Scholar
  170. [171]
    Trinks, W.: Über B. Buchbergers Verfahren, Systeme algebraischer Gleichungen zu lösen. J. Number Theory 10, 475–488 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  171. [172]
    Tolhuizen, L., Hollmann, H., Kalker, A.: On the realizability of Bi-orthogonal M-dimensional 2-band filter banks. IEEE Trans. Signal Process. 43, 640–648 (1995)CrossRefGoogle Scholar
  172. [173]
    Valibouze, A., Yengui, I.: On saturations of ideals in finitely-generated commutative rings and Gröbner rings. Preprint (2013)Google Scholar
  173. [174]
    Vaserstein, L.N.: K 1-theory and the congruence problem. Mat. Zametki 5, 233–244 (1969)MathSciNetGoogle Scholar
  174. [175]
    Vaserstein, L.N.: Operations on orbits of unimodular vectors. J. Algebra 100, 456–461 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  175. [176]
    von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (2003)Google Scholar
  176. [177]
    Wienand, O.: Algorithms for symbolic computation and their applications. Ph.D. thesis, Kaiserslautern (2011)Google Scholar
  177. [178]
    Winkler, F.: A p-adic approach to the computation of Gröbner bases. J. Symb. Comput. 6, 287–304 (1987)CrossRefGoogle Scholar
  178. [179]
    Yengui, I.: An algorithm for the divisors of monic polynomials over a commutative ring. Math. Nachr. 260, 1–7 (2003)MathSciNetCrossRefGoogle Scholar
  179. [180]
    Yengui, I.: Making the use of maximal ideals constructive. Theor. Comput. Sci. 392, 174–178 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  180. [181]
    Yengui, I.: Dynamical Gröbner bases. J. Algebra 301, 447–458 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  181. [182]
    Yengui, I.: The Hermite ring conjecture in dimension one. J. Algebra 320, 437–441 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  182. [183]
    Yengui, I.: Corrigendum to dynamical Gröbner bases [J. Algebra 301(2), 447–458 (2006)] and to Dynamical Gröbner bases over Dedekind rings [J. Algebra 324(1), 12–24 (2010)]. J. Algebra 339, 370–375 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  183. [184]
    Yengui, I.: Stably free modules over R[X] of rank \(>\dim \mathbf{R}\) are free. Math. Comput. 80, 1093–1098 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  184. [185]
    Yengui, I.: The Gröbner ring conjecture in the lexicographic order case. Math. Z. 276, 261–265 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  185. [186]
    Youla, D.C., Pickel, P.F.: The Quillen-Suslin theorem and the structure of n-dimentional elementary polynomial matrices. IEEE Trans. Circ. Syst. 31, 513–518 (1984)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Ihsen Yengui
    • 1
  1. 1.Fac. of Science, Dept. of MathematicsUniversity of SfaxSfaxTunisia

Personalised recommendations