Discrete Parameters in Petri Nets

  • Nicolas DavidEmail author
  • Claude Jard
  • Didier Lime
  • Olivier H. Roux
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9115)


With the aim of significantly increasing the modeling capability of Petri nets, we suggest that models involve parameters to represent the weights of arcs, or the number of tokens in places. We consider the property of coverability of markings. Two general questions arise: “Is there a parameter value for which the property is satisfied?" and “Does the property hold for all possible values of the parameters?". We show that these issues are undecidable in the general case. Therefore, we also define subclasses of parameterised networks, depending on whether the parameters are used on places, input or output arcs of transitions. For some subclasses, we prove that certain problems become decidable, making these subclasses more usable in practice.


Petri net Parameters Coverability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC 1993, New York, NY, USA, pp. 592–601. ACM (1993)Google Scholar
  2. 2.
    Araki, T., Kasami, T.: Some decision problems related to the reachability problem for Petri nets. Theoretical Computer Science 3(1), 85–104 (1976)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  4. 4.
    Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: A symbolic reachability graph for coloured petri nets. Theor. Comput. Sci. 176(1–2), 39–65 (1997)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and undecidability. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 103–115. Springer, Heidelberg (1998) CrossRefGoogle Scholar
  6. 6.
    Jones, N.D., Landweber, L.H., Lien, Y.E.: Complexity of some problems in Petri nets. Theoretical Computer Science 4, 277–299 (1977)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and System Sciences 3(2), 147–195 (1969)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Lindqvist, M.: Parameterized reachability trees for predicate/transition nets. In: Rozenberg, G. (ed.) Advances in Petri Nets 1993. LNCS, vol. 674, pp. 301–324. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  9. 9.
    Mayr, E.W.: An algorithm for the general petri net reachability problem. In: Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, STOC 1981, New York, NY, USA, pp. 238–246. ACM (1981)Google Scholar
  10. 10.
    Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall Inc., Upper Saddle River (1967)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Nicolas David
    • 1
    Email author
  • Claude Jard
    • 1
  • Didier Lime
    • 2
  • Olivier H. Roux
    • 2
  1. 1.University of Nantes, LINANantesFrance
  2. 2.École Centrale de Nantes, IRCCyNNantesFrance

Personalised recommendations