Process Mining Reloaded: Event Structures as a Unified Representation of Process Models and Event Logs

  • Marlon DumasEmail author
  • Luciano García-Bañuelos
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9115)


Process mining is a family of methods to analyze event logs produced during the execution of business processes in order to extract insights regarding their performance and conformance with respect to normative or expected behavior. The landscape of process mining methods and use cases has expanded considerably in the past decade. However, the field has evolved in a rather ad hoc manner without a unifying foundational theory that would allow algorithms and theoretical results developed for one process mining problem to be reused when addressing other related problems. In this paper we advocate a foundational approach to process mining based on a well-known model of concurrency, namely event structures. We outline how event structures can serve as a unified representation of behavior captured in process models and behavior captured in event logs. We then sketch how process mining operations, specifically automated process discovery, conformance checking and deviance mining, can be recast as operations on event structures.


Business Process Process Mining Event Structure Model Repair Conformance Check 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer (2011)Google Scholar
  2. 2.
    van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011 Workshops, Part I. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  3. 3.
    Object Management Group: Business Process Model and Notation (BPMN) Version 2.0. Technical report, Object Management Group Final Adopted Specification (2011).
  4. 4.
    Nielsen, M., Plotkin, G.D., Winskel, G.: Petri Nets, Event Structures and Domains, Part I. Theoretical Computer Science 13, 85–108 (1981)zbMATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive monitoring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 457–472. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  6. 6.
    Bose, R.J.C., van der Aalst, W.M., Zliobaite, I., Pechenizkiy, M.: Dealing with concept drifts in process mining. IEEE Transactions on Neural Networks and Learning Systems 25(1), 154–171 (2014)CrossRefGoogle Scholar
  7. 7.
    Folino, F., Greco, G., Guzzo, A., Pontieri, L.: Mining usage scenarios in business processes: Outlier-aware discovery and run-time prediction. Data Knowl. Eng. 70(12), 1005–1029 (2011)CrossRefGoogle Scholar
  8. 8.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE TKDE 16(9), 1128–1142 (2004)Google Scholar
  9. 9.
    Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: CIDM, pp. 310–317. IEEE (2011)Google Scholar
  10. 10.
    van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Process discovery using integer linear programming. Fundam. Inform. 94(3–4), 387–412 (2009)zbMATHGoogle Scholar
  11. 11.
    Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based algorithms for deriving bounded petri nets. IEEE Trans. Computers 59(3), 371–384 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs - a constructive approach. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  13. 13.
    Weerdt, J.D., Backer, M.D., Vanthienen, J., Baesens, B.: A multi-dimensional quality assessment of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst. 37(7), 654–676 (2012)CrossRefGoogle Scholar
  14. 14.
    Reijers, H., Mendling, J.: A study into the factors that influence the understandability of business process models. IEEE T. Syst. Man Cy. A 41(3), 449–462 (2011)CrossRefGoogle Scholar
  15. 15.
    Rozinat, A.: Process Mining Conformance and Extension. PhD thesis, Technische Universiteit Eindhoven (2010)Google Scholar
  16. 16.
    Adriansyah, A., van Dongen, B., van der Aalst, W.: Conformance checking using cost-based fitness analysis. In: EDOC, pp. 55–64. IEEE (2011)Google Scholar
  17. 17.
    Fahland, D., van der Aalst, W.P.: Model repair - aligning process models to reality. Inf. Syst. 47, 220–243 (2015)CrossRefGoogle Scholar
  18. 18.
    Nguyen, H., Dumas, M., La Rosa, M., Maggi, F.M., Suriadi, S.: Mining business process deviance: a quest for accuracy. In: Meersman, R., Panetto, H., Dillon, T., Missikoff, M., Liu, L., Pastor, O., Cuzzocrea, A., Sellis, T. (eds.) OTM 2014. LNCS, vol. 8841, pp. 436–445. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  19. 19.
    Suriadi, S., Wynn, M.T., Ouyang, C., ter Hofstede, A.H.M., van Dijk, N.J.: Understanding process behaviours in a large insurance company in australia: a case study. In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp. 449–464. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  20. 20.
    Lakshmanan, G.T., Rozsnyai, S., Wang, F.: Investigating clinical care pathways correlated with outcomes. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 323–338. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  21. 21.
    Bose, R.P.J.C., van der Aalst, W.M.P.: Abstractions in process mining: a taxonomy of patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 159–175. Springer, Heidelberg (2009) CrossRefGoogle Scholar
  22. 22.
    Lo, D., Cheng, H., Han, J., Khoo, S.C., Sun, C.: Classification of software behaviors for failure detection: a discriminative pattern mining approach. In: KDD, pp. 557–566. ACM (2009)Google Scholar
  23. 23.
    Carmona, J., Gavaldà, R.: Online techniques for dealing with concept drift in process mining. In: Hollmén, J., Klawonn, F., Tucker, A. (eds.) IDA 2012. LNCS, vol. 7619, pp. 90–102. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  24. 24.
    Esparza, J., Römer, S., Vogler, W.: An improvement of mcmillan’s unfolding algorithm. Formal Methods in System Design 20(3), 285–310 (2002)zbMATHCrossRefGoogle Scholar
  25. 25.
    Armas-Cervantes, A., Baldan, P., Dumas, M., García-Bañuelos, L.: Behavioral comparison of process models based on canonically reduced event structures. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 267–282. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  26. 26.
    van Beest, N., Dumas, M., García-Bañuelos, L., La Rosa, M.: Log delta analysis: Interpretable differencing of business process event logs. Eprint no. 83018. Queensland University of Technology (2015)Google Scholar
  27. 27.
    Cook, J.E., Wolf, A.L.: Event-based detection of concurrency. In: FSE, pp. 35–45. ACM (1998)Google Scholar
  28. 28.
    Armas-Cervantes, A., Baldan, P., Dumas, M., García-Bañuelos, L.: Bp-diff: a tool for behavioral comparison of business process models. In: Limonad, L., Weber, B. (eds.) Proceedings of the BPM Demo Sessions 2014 Co-located with the 12th International Conference on Business Process Management (BPM 2014). CEUR Workshop Proceedings, vol. 1295, pp. 1–6. (2014)Google Scholar
  29. 29.
    Baldan, P., Corradini, A., Montanari, U.: Contextual Petri Nets, Asymmetric Event Structures, and Processes. Information and Computation 171, 1–49 (2001)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Fahland, D., van der Aalst, W.M.P.: Simplifying discovered process models in a controlled manner. Inf. Syst. 38(4), 585–605 (2013)CrossRefGoogle Scholar
  31. 31.
    van Dongen, B.F., Desel, J., van der Aalst, W.M.P.: Aggregating causal runs into workflow nets. T. Petri Nets and Other Models of Concurrency 6, 334–363 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of TartuTartuEstonia

Personalised recommendations