New Search Strategies for the Petri Net CEGAR Approach

  • Ákos Hajdu
  • András VörösEmail author
  • Tamás Bartha
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9115)


Petri nets are a successful formal method for the modeling and verification of asynchronous, concurrent and distributed systems. Reachability analysis can provide important information about the behavior of the model. However, reachability analysis is a computationally hard problem, especially when the state space is infinite. Abstraction-based techniques are often applied to overcome complexity. In this paper we analyze an algorithm, which uses counterexample guided abstraction refinement. This algorithm proved its efficiency on the model checking contest. We examine the algorithm from a theoretical and practical point of view. On the theoretical side, we show that the algorithm cannot decide reachability for relatively simple instances. We propose a new iteration strategy to explore the invariant space, which extends the set of decidable problems. We also give proofs on the theoretical limits of our approach. On the practical side, we examine different search strategies and we present our new, complex strategy with superior performance compared to traditional strategies. Measurements show that our new contributions perform well for traditional benchmark models as well.


Petri nets Reachability analysis Abstraction CEGAR ILP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beyer, D., Henzinger, T., Jhala, R., Majumdar, R.: The software model checker Blast. International Journal on Software Tools for Technology Transfer 9(5–6), 505–525 (2007)CrossRefGoogle Scholar
  2. 2.
    Ciardo, G., Lüttgen, G., Siminiceanu, R.: Saturation: an efficient iteration strategy for symbolic state-space generation. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 328–342. Springer, Heidelberg (2001) CrossRefGoogle Scholar
  3. 3.
    Ciardo, G., Zhao, Y., Jin, X.: Ten years of saturation: a Petri net perspective. In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) ToPNoC V. LNCS, vol. 6900, pp. 51–95. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  4. 4.
    Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)CrossRefGoogle Scholar
  6. 6.
    Dantzig, G.B., Thapa, M.N.: Linear programming 1: introduction. Springer-Verlag New York Inc., Secaucus (1997) zbMATHGoogle Scholar
  7. 7.
    Dijkstra, E.: Hierarchical ordering of sequential processes. Acta Informatica 1(2), 115–138 (1971)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hajdu, Á., Vörös, A., Tamás, B., Mártonka, Z.: Extensions to the CEGAR approach on Petri nets. Acta Cybernetica 21(3), 401–417 (2014)zbMATHMathSciNetGoogle Scholar
  9. 9.
    John, A., Konnov, I., Schmid, U., Veith, H., Widder, J.: Parameterized model checking of fault-tolerant distributed algorithms by abstraction. In: Formal Methods in Computer-Aided Design (FMCAD), pp. 201–209, October 2013Google Scholar
  10. 10.
    Kordon, F., Linard, A., Becutti, M., Buchs, D., Fronc, L., Hulin-Hubard, F., Legond-Aubry, F., Lohmann, N., Marechal, A., Paviot-Adet, E., Pommereau, F., Rodrígues, C., Rohr, C., Thierry-Mieg, Y., Wimmel, H., Wolf, K.: Web report on the model checking contest @ Petri net 2013, June 2013.
  11. 11.
    Lipton, R.: The Reachability Problem Requires Exponential Space. Research report, Yale University, Dept. of Computer Science (1976)Google Scholar
  12. 12.
    Mayr, E.W.: An algorithm for the general Petri net reachability problem. In: Proceedings of the Thirteenth Annual ACM Symposium on Theory of Computing, pp. 238–246. STOC 1981. ACM, New York (1981)Google Scholar
  13. 13.
    Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  14. 14.
    Vörös, A., Darvas, D., Bartha, T.: Bounded saturation based CTL model checking. In: Proceedings of the 12th Symposium on Programming Languages and Software Tools, SPLST 2011 (2011)Google Scholar
  15. 15.
    Website of PetriDotNet. (online accessed March 22, 2015)
  16. 16.
    Website of the models used in the measurements. (online accessed March 22, 2015)
  17. 17.
    Website of the SARA tool. (online accessed March 22, 2015)
  18. 18.
    Wimmel, H., Wolf, K.: Applying CEGAR to the Petri net state equation. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 224–238. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  19. 19.
    Wimmel, H., Wolf, K.: Applying CEGAR to the Petri net state equation. Logical Methods in Computer Science 8(3) (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Measurement and Information SystemsBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Institute for Computer Science and ControlMTA SZTAKIBudapestHungary

Personalised recommendations