Advertisement

On the Reversibility of Live Equal-Conflict Petri Nets

  • Thomas HujsaEmail author
  • Jean-Marc Delosme
  • Alix Munier-Kordon
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9115)

Abstract

A Petri net is reversible if its initial marking is a home marking, a marking reachable from any reachable marking. This property is fundamental in man-made systems as it lets a system return to its initial state using only internal operations.

Necessary and sufficient conditions are already known for the reversibility of well-formed Choice-Free and ordinary Free-Choice nets. Like the homogeneous Join-Free nets, these nets constitute subclasses of Equal-Conflict nets. In this larger class, the reversibility property is not well understood.

This paper provides the first characterization of reversibility for all the live Equal-Conflict systems by extending, in a weaker form, a known condition that applies to the Choice-Free and Free-Choice subclasses. We also show that this condition is tightly related to the Equal-Conflict class and does not apply to several other classes.

Keywords

Reversibility Home markings Liveness Weighted petri nets Characterization Equal-conflict Join-free Choice-free Free-choice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Araki, T., Kasami, T.: Decidable Problems on the Strong Connectivity of Petri Net Reachability Sets. Theoretical Computer Science 4(1), 99–119 (1977)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Barkaoui, K., Couvreur, J.-M., Klai, K.: On the equivalence between liveness and deadlock-freeness in petri nets. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 90–107. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  3. 3.
    Best, E., Darondeau, P.: Petri net distributability. In: Clarke, E., Virbitskaite, I., Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  4. 4.
    de Frutos Escrig, D., Johnen, C.: Decidability of Home Space Property. Tech. Rep. LRI-503, Univ. de Paris-Sud, Centre d’Orsay, LRI (1989)Google Scholar
  5. 5.
    Desel, J., Esparza, J.: Free Choice Petri Nets, Cambridge Tracts in Theoretical Computer Science, vol. 40. Cambridge University Press, New York (1995) CrossRefGoogle Scholar
  6. 6.
    Haddad, S., Mairesse, J., Nguyen, H.T.: Synthesis and Analysis of Product-form Petri Nets. Fundamenta Informaticae 122(1–2), 147–172 (2013)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Hujsa, T., Delosme, J.-M., Munier-Kordon, A.: On the reversibility of well-behaved weighted choice-free systems. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014. LNCS, vol. 8489, pp. 334–353. Springer, Heidelberg (2014) CrossRefGoogle Scholar
  8. 8.
    Lee, E.A., Messerschmitt, D.G.: Synchronous Data Flow. Proceedings of the IEEE 75(9), 1235–1245 (1987)CrossRefGoogle Scholar
  9. 9.
    López-Grao, J.-P., Colom, J.-M.: Structural Methods for the Control of Discrete Event Dynamic Systems – The Case of the Resource Allocation Problem. In: Seatzu, C., Silva Suárez, M., van Schuppen, J.H. (eds.) Control of Discrete-event Systems. LNCIS, vol. 433, pp. 257–278. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  10. 10.
    Memmi, G., Roucairol, G.: Linear Algebra in Net Theory. In: Brauer, W. (ed.) Net Theory and Applications. LNCS, vol. 84, pp. 213–223. Springer, Heidelberg (1980)CrossRefGoogle Scholar
  11. 11.
    Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  12. 12.
    Recalde, L., Teruel, E., Silva, M.: SC*ECS: a class of modular and hierarchical cooperating systems. In: Billington, J., Reisig, W. (eds.) Application and Theory of Petri Nets 1996. LNCS, vol. 1091, pp. 440–459. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  13. 13.
    Sifakis, J.: Structural properties of petri nets. In: Winkowski, J. (ed.) Mathematical Foundations of Computer Science. LNCS, vol. 64, pp. 474–483. Springer, Heidelberg (1978)Google Scholar
  14. 14.
    Teruel, E., Chrzastowski-Wachtel, P., Colom, J.M., Silva, M.: On Weighted T-systems. In: Jensen, K. (ed.) Application and Theory of Petri Nets 1992. LNCS, vol. 616, pp. 348–367. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  15. 15.
    Teruel, E., Colom, J.M., Silva, M.: Choice-Free Petri Nets: A Model for Deterministic Concurrent Systems with Bulk Services and Arrivals. IEEE Transactions on Systems, Man and Cybernetics, Part A 27(1), 73–83 (1997)CrossRefGoogle Scholar
  16. 16.
    Teruel, E., Silva, M.: Liveness and home states in equal-conflict systems. In: Marsan, M.A. (ed.) Application and Theory of Petri Nets 1993. LNCS, vol. 691, pp. 415–432. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  17. 17.
    Teruel, E., Silva, M.: Structure Theory of Equal Conflict Systems. Theoretical Computer Science 153(1&2), 271–300 (1996)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Thomas Hujsa
    • 1
    Email author
  • Jean-Marc Delosme
    • 2
  • Alix Munier-Kordon
    • 3
  1. 1.LIAFA, Université Paris Diderot - Paris 7 and CNRS UMR 7089ParisFrance
  2. 2.Université d’Evry-Val-D’Essonne, IBISCEvryFrance
  3. 3.Sorbonne Universités, UPMC Paris 06, UMR 7606, LIP6ParisFrance

Personalised recommendations