Skip to main content

Drug Discovery and Repurposing for Retinoblastoma

  • Chapter
Recent Advances in Retinoblastoma Treatment

Abstract

Retinoblastoma, a rare cancer of the eye, presents an urgent and unmet clinical need for an improved and effective treatment. Discovery of novel drugs and therapy would require an emphasis and refocus on adopting approaches that are fast, efficacious, and innovative, so as to bridge the growing gap between research labs and clinic. To this end, three main approaches with a potential of high return on investment and better value proposition have been described. First, use of high-throughput phenotypic screens to test a focused set of FDA-approved drugs presents an excellent opportunity to repurpose existing drugs and foster translational research, with minimal time commitment. This is also complemented by the advent of alternate routes of localized drug delivery, which opens doors to revisit shelved drugs previously ignored due to their high systemic toxicity. In addition, testing natural products offer the capability to broaden the limited structural diversity within the commercially available chemical collections and can fuel identification of new chemical entities. Second, non-toxic nutraceuticals can be evaluated for their applicability as companion effectors to enhance ongoing chemotherapy, improving the health of young patients. Third, use of three-dimensional models to test chemotherapeutic agents for retinoblastoma is proposed; such models are true prototypes of an in vivo tumor, and perhaps more realistic indicators of a drug’s efficacy and higher potential of clinical success. Taken together, these three approaches can be viewed as the rapid routes towards drug discovery with hopes to establish a quick and potent therapy for retinoblastoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson DH. Retinoblastoma: saving life with vision. Annu Rev Med. 2014;65:171–84.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad KA, Clement MV, Hanif IM, et al. Resveratrol inhibits drug-induced apoptosis in human leukemia cells by creating an intracellular milieu nonpermissive for death execution. Cancer Res. 2004;64:1452–9.

    Article  CAS  PubMed  Google Scholar 

  • Antczak C, Kloepping C, Radu C, et al. Revisiting old drugs as novel agents for retinoblastoma: in vitro and in vivo antitumor activity of cardenolides. Invest Ophthalmol Vis Sci. 2009;50:3065–73.

    Article  PubMed Central  PubMed  Google Scholar 

  • Benien P, Swami A. 3D tumor models: history, advances and future perspectives. Future Oncol. 2014;10:1311–27.

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj U, Eckols TK, Kolosov M, et al. Drug-repositioning screening identified piperlongumine as a direct STAT3 inhibitor with potent activity against breast cancer. Oncogene. 2015;34(11):1341–53. doi:10.1038/onc.2014.72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhinder B, Djaballah H. Drug discovery and repurposing at Memorial Sloan Kettering Cancer Center: chemical biology drives translational medicine. ACS Chem Biol. 2014;9:1394–7.

    Article  CAS  PubMed  Google Scholar 

  • Brennan RC, Federico S, Bradley C, et al. Targeting the p53 pathway in retinoblastoma with subconjunctival nutlin-3a. Cancer Res. 2011;71:4205–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheung KJ, Ewald AJ. Illuminating breast cancer invasion: diverse roles for cell-cell interactions. Curr Opin Cell Biol. 2014;30:99–111.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daquinag AC, Souza GR, Kolonin MG. Adipose tissue engineering in three-dimensional levitation tissue culture system based on magnetic nanoparticles. Tissue Eng Part C Methods. 2013;19:336–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Di Fiore R, Drago-Ferrante R, D’Anneo A, et al. In human retinoblastoma Y79 cells okadaic acid-parthenolide co-treatment induces synergistic apoptotic effects, with PTEN as a key player. Cancer Biol Ther. 2013;14:922–31.

    Article  PubMed Central  PubMed  Google Scholar 

  • Djaballah H. Chemical space, high throughput screening and the world of blockbuster drugs. DDW. Spring 2013.

    Google Scholar 

  • Francis JH, Schaiquevich P, Buitrago E, et al. Local and systemic toxicity of intravitreal melphalan for vitreous seeding in retinoblastoma: a preclinical and clinical study. Ophthalmology. 2014;121:1810–7.

    Article  PubMed  Google Scholar 

  • Fulda S. Resveratrol and derivatives for the prevention and treatment of cancer. Drug Discov Today. 2010;15:757–65.

    Article  CAS  PubMed  Google Scholar 

  • Grossniklaus HE. Retinoblastoma. Fifty years of progress. The LXXI Edward Jackson Memorial Lecture. Am J Ophthalmol. 2014;158(5):875–91. doi:10.1016/j.ajo.2014.07.025.

    Article  PubMed Central  PubMed  Google Scholar 

  • Grun B, Benjamin E, Sinclair J, et al. Three-dimensional in vitro cell biology models of ovarian and endometrial cancer. Cell Prolif. 2009;42:219–28.

    Article  CAS  PubMed  Google Scholar 

  • Gupta SC, Kim JH, Prasad S, et al. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev. 2010;29:405–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta SC, Sung BY, Prasad S, et al. Cancer drug discovery by repurposing: teaching new tricks to old dogs. Trends Pharmacol Sci. 2013;34:508–17.

    Article  CAS  PubMed  Google Scholar 

  • Haisler WL, Timm DM, Gage JA, et al. Three-dimensional cell culturing by magnetic levitation. Nat Protoc. 2013;8:1940–9.

    Article  CAS  PubMed  Google Scholar 

  • Hartung T. Look back in anger—what clinical studies tell us about preclinical work. ALTEX. 2013;30:275–91.

    Article  PubMed Central  PubMed  Google Scholar 

  • Haycock JW. 3D cell culture: a review of current approaches and techniques. Methods Mol Biol. 2011;695:1–15.

    Article  CAS  PubMed  Google Scholar 

  • Houston SK, Lampidis TJ, Murray TG. Models and discovery strategies for new therapies of retinoblastoma. Expert Opin Drug Discov. 2013;8:383–94.

    Article  CAS  PubMed  Google Scholar 

  • Jahchan NS, Dudley JT, Mazur PK, et al. A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer Discov. 2013;3:1364–77.

    Article  CAS  PubMed  Google Scholar 

  • Kelm JM, Timmins NE, Brown CJ, et al. Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnol Bioeng. 2003;83:173–80.

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim JH, Yu YS, et al. Comparative genomic hybridization analysis of newly established retinoblastoma cell lines of adherent growth compared with Y79 of nonadherent growth. J Pediatr Hematol Oncol. 2008;30:571–4.

    Article  CAS  PubMed  Google Scholar 

  • Klein G, Michaelis J, Spix C, et al. Second malignant neoplasms after treatment of childhood cancer. Eur J Cancer. 2003;39:808–17.

    Article  CAS  PubMed  Google Scholar 

  • Knight ZA, Lin H, Shokat KM. Targeting the cancer kinome through polypharmacology. Nat Rev Cancer. 2010;10:130–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kummar S, Chen HX, Wright J, et al. Utilizing targeted cancer therapeutic agents in combination: novel approaches and urgent requirements. Nat Rev Drug Discov. 2010;9:843–56.

    Article  CAS  PubMed  Google Scholar 

  • Lamhamedi-Cherradi SE, Santoro M, Ramammoorthy V, et al. 3D tissue-engineered model of Ewing’s sarcoma. Adv Drug Deliv Rev. 2014;79–80:155–71. doi:10.1016/j.addr.2014.07.012.

    Article  PubMed  Google Scholar 

  • Laurie NA, Donovan SL, Shih CS, et al. Inactivation of the p53 pathway in retinoblastoma. Nature. 2006;444:61–6.

    Article  CAS  PubMed  Google Scholar 

  • Mahida JP, Antczak C, Decarlo D, et al. A synergetic screening approach with companion effector for combination therapy: application to retinoblastoma. PLoS One. 2013;8:e59156.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mao QQ, Bai Y, Lin YW, et al. Resveratrol confers resistance against taxol via induction of cell cycle arrest in human cancer cell lines. Mol Nutr Food Res. 2010;54:1574–84.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda Y, Ishiwata T, Kawamoto Y, et al. Morphological and cytoskeletal changes of pancreatic cancer cells in three-dimensional spheroidal culture. Med Mol Morphol. 2010;43:211–7.

    Article  PubMed  Google Scholar 

  • Mitra M, Mohanty C, Harilal A, et al. A novel in vitro three-dimensional retinoblastoma model for evaluating chemotherapeutic drugs. Mol Vis. 2012;18:1361–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nishimura S, Sato T, Ueda H, et al. Acute myeloblastic leukemia as a second malignancy in a patient with hereditary retinoblastoma. J Clin Oncol. 2001;19:4182–3.

    CAS  PubMed  Google Scholar 

  • Nygren P, Larsson R. Drug repositioning from bench to bedside: Tumour remission by the antihelmintic drug mebendazole in refractory metastatic colon cancer. Acta Oncol. 2014;53:427–8.

    Article  PubMed  Google Scholar 

  • Ong SM, Zhao ZQ, Arooz T, et al. Engineering a scaffold-free 3D tumor model for in vitro drug penetration studies. Biomaterials. 2010;31:1180–90.

    Article  CAS  PubMed  Google Scholar 

  • Patel M, Paulus YM, Gobin YP, et al. Intra-arterial and oral digoxin therapy for retinoblastoma. Ophthalmic Genet. 2011;32:147–50.

    Article  CAS  PubMed  Google Scholar 

  • Paul SM, Mytelka DS, Dunwiddie CT, et al. How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat Rev Drug Discov. 2010;9:203–14.

    CAS  PubMed  Google Scholar 

  • Rajcevic U, Knol JC, Piersma S, et al. Colorectal cancer derived organotypic spheroids maintain essential tissue characteristics but adapt their metabolism in culture. Proteome Sci. 2014;12:39.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rizzuti AE, Dunkel IJ, Abramson DH. The adverse events of chemotherapy for retinoblastoma—what are they? Do we know? Arch Ophthalmol. 2008;126:862–5.

    Article  CAS  PubMed  Google Scholar 

  • Sareen D, van Ginkel PR, Takach JC, et al. Mitochondria as the primary target of resveratrol-induced apoptosis in human retinoblastoma cells. Invest Ophthalmol Vis Sci. 2006;47:3708–16.

    Article  PubMed  Google Scholar 

  • Shao QL, Zhao XX, Yao L. Matrine inhibits the growth of retinoblastoma cells (SO-Rb50) by decreasing proliferation and inducing apoptosis in a mitochondrial pathway. Mol Biol Rep. 2014;41:3475–80.

    Article  CAS  PubMed  Google Scholar 

  • Shields CL, Shields JA. Diagnosis and management of retinoblastoma. Cancer Control. 2004;11:317–27.

    PubMed  Google Scholar 

  • Takenaka T. Classical vs reverse pharmacology in drug discovery. BJU Int. 2001;88:7–10.

    Article  CAS  PubMed  Google Scholar 

  • Theriault BL, Dimaras H, Gallie BL, et al. The genomic landscape of retinoblastoma: a review. Clin Exp Ophthalmol. 2014;42:33–52.

    Article  Google Scholar 

  • Tripathi YB, Tripathi P, Arjmandi BH. Nutraceuticals and cancer management. Front Biosci. 2005;10:1607–18.

    Article  CAS  PubMed  Google Scholar 

  • van Ginkel PR, Darjatmoko SR, Sareen D, et al. Resveratrol inhibits uveal melanoma tumor growth via early mitochondrial dysfunction. Invest Ophthalmol Vis Sci. 2008;49:1299–306.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wagner N, Wagner KD, Schley G, et al. 1,25-dihydroxyvitamin d-3-induced apoptosis of retinoblastoma cells is associated with reciprocal changes of bcl-2 and bax. Exp Eye Res. 2003;77:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Weaver VM, Petersen OW, Wang F, et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol. 1997;137:231–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu X, Farach-Carson MC, Jia X. Three-dimensional in vitro tumor models for cancer research and drug evaluation. Biotechnol Adv. 2014;32(7):1256–68. doi:10.1016/j.biotechadv.2014.07.009.

    Article  CAS  PubMed  Google Scholar 

  • Yamada KM, Cukierman E. Modeling tissue morphogenesis and cancer in 3D. Cell. 2007;130:601–10.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Benavente CA, McEvoy J, et al. A novel retinoblastoma therapy from genomic and epigenetic analyses. Nature. 2012;481:329–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y, Yao R, Ouyang L, et al. Three-dimensional printing of hela cells for cervical tumor model in vitro. Biofabrication. 2014;6:035001.

    Article  PubMed  Google Scholar 

  • Zheng QX, Zhang Y, Ren YP, et al. Antiproliferative and apoptotic effects of indomethacin on human retinoblastoma cell line Y79 and the involvement of beta-catenin, nuclear factor-kappa B and Akt signaling pathways. Ophthalmic Res. 2014;51:109–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethical Requirements

All authors (Bhavneet Bhinder, Jeni P. Mahida, Glorymar Ibáñez, Kathryn Champ, Christophe Antczak, and Hakim Djaballah) declare that they have no conflict of interest.

No human or animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hakim Djaballah Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhinder, B., Mahida, J.P., Ibáñez, G., Champ, K., Antczak, C., Djaballah, H. (2015). Drug Discovery and Repurposing for Retinoblastoma. In: Francis, J., Abramson, D. (eds) Recent Advances in Retinoblastoma Treatment. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-19467-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19467-7_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19466-0

  • Online ISBN: 978-3-319-19467-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics