Skip to main content

Cell Transplantation for Ischemic Heart Disease

  • Chapter
Handbook of Cardiac Anatomy, Physiology, and Devices

Abstract

Recent studies support the notion that cardiomyocyte regeneration may occur during physiological and pathological states in the adult heart. These data highlight the possibilities that myocardial regeneration may occur via cardiomyocyte proliferation and/or differentiation of putative cardiac stem cells. To date, various cell types have been used for cardiac repair, including skeletal myoblasts, bone marrow-derived cells, mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), umbilical cord blood (UCB) stem cells, cardiac stem cells, and embryonic stem cells (ESCs). This chapter will review each of these different stem cell populations in regards to the potential treatment of heart disease. We will examine the in vitro and in vivo animal studies, and then briefly discuss the cell therapy clinical trials that are currently underway for the treatment of ischemic heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CPCs:

Cardiac progenitor cells

EPCs:

Endothelial progenitor cells

ESCs:

Embryonic stem cells

HGF:

Hepatocyte growth factor

hiPSCs:

Human induced pluripotent stem cells

IGF-1:

Insulin-like growth factor

LV:

Left ventricular

MI:

Myocardial infarction

MSCs:

Mesenchymal stem cells

Sca-1:

Stem cell antigen-1

SDF-1:

Stromal cell-derived factor-1

SP:

Side population

UCB:

Umbilical cord blood

VEGF:

Vascular endothelial growth factor

References

  1. Weir RA, McMurray JJ (2006) Epidemiology of heart failure and left ventricular dysfunction after acute MI. Curr Heart Fail Rep 3:175–180

    PubMed  Google Scholar 

  2. Anversa P, Nadal-Ginard B (2002) Myocyte renewal and ventricular remodelling. Nature 415:240–243

    CAS  PubMed  Google Scholar 

  3. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    CAS  PubMed  Google Scholar 

  4. Nussbaum J, Minami E, Laflamme MA et al (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21:1345–1357

    CAS  PubMed  Google Scholar 

  5. Doetschman TC, Eistetter H, Katz M et al (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87:27–45

    CAS  PubMed  Google Scholar 

  6. Wobus AM, Guan K, Yang HT et al (2002) Embryonic stem cells as a model to study cardiac, skeletal muscle, and vascular smooth muscle cell differentiation. Methods Mol Biol 185:127–156

    CAS  PubMed  Google Scholar 

  7. Kolossov E, Bostani T, Roell W et al (2006) Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium. J Exp Med 203:2315–2327

    CAS  PubMed Central  PubMed  Google Scholar 

  8. Min JY, Yang Y, Converso KL et al (2002) Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J Appl Physiol 92:288–296

    PubMed  Google Scholar 

  9. Singla DK, Hacker TA, Ma L et al (2006) Transplantation of embryonic stem cells into the infarcted mouse heart: formation of multiple cell types. J Mol Cell Cardiol 40:195–200

    CAS  PubMed  Google Scholar 

  10. Kattman SJ, Huber TL, Keller GM (2006) Multipotent flk-1+ cardiovascular progenitor cells give rise to the cardiomyocyte, endothelial, and vascular smooth muscle lineages. Dev Cell 11:723–732

    CAS  PubMed  Google Scholar 

  11. Moretti A, Caron L, Nakano A et al (2006) Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification. Cell 127:1151–1165

    CAS  PubMed  Google Scholar 

  12. Wu SM, Fujiwara Y, Cibulsky SM et al (2006) Developmental origin of a bipotential myocardial and smooth muscle cell precursor in the mammalian heart. Cell 127:1137–1150

    CAS  PubMed  Google Scholar 

  13. Kehat I, Kenyagin-Karsenti D, Snir M et al (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 108:407–414

    CAS  PubMed Central  PubMed  Google Scholar 

  14. Kehat I, Khimovich L, Caspi O et al (2004) Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 22:1282–1289

    CAS  PubMed  Google Scholar 

  15. Laflamme MA, Gold J, Xu C et al (2005) Formation of human myocardium in the rat heart from human embryonic stem cells. Am J Pathol 167:663–671

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Xue T, Cho HC, Akar FG et al (2005) Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 111:11–20

    PubMed  Google Scholar 

  17. Laflamme MA, Chen KY, Naumova AV et al (2007) Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat Biotechnol 25:1015–1024

    CAS  PubMed  Google Scholar 

  18. Woll PS, Morris JK, Painschab MS et al (2008) Wnt signaling promotes hematoendothelial cell development from human embryonic stem cells. Blood 111:122–131

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Hill KL, Obrtlikova P, Alvarez DF et al (2010) Human embryonic stem cell-derived vascular progenitor cells capable of endothelial and smooth muscle cell function. Exp Hematol 38:246–257.e1.

    Google Scholar 

  20. Zhang S, Dutton JR, Su L et al (2014) The influence of a spatiotemporal 3D environment on endothelial cell differentiation of human induced pluripotent stem cells. Biomaterials 35:3786–3793

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Ye L, Zhang S, Greder L et al (2013) Effective cardiac myocyte differentiation of human induced pluripotent stem cells requires VEGF. PLoS One 8, e53764

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Ye L, Chang YH, Xiong Q et al (2014) Cardiac repair in a porcine model of acute myocardial infarction with human induced pluripotent stem cell-derived cardiovascular cells. Cell Stem Cell 15:750–761.

    Google Scholar 

  23. Chong JJ, Yang X, Don CW et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510:273–277

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Kim K, Doi A, Wen B et al (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Bar-Nur O, Russ HA, Efrat S et al (2011) Epigenetic memory and preferential lineage-specific differentiation in induced pluripotent stem cells derived from human pancreatic islet beta cells. Cell Stem Cell 9:17–23

    CAS  PubMed  Google Scholar 

  26. Zhang L, Guo J, Zhang P et al (2015) Derivation and high engraftment of patient-specific cardiomyocyte-sheet using induced pluripotent stem cells generated from adult cardiac fibroblast. Circ Heart Fail 8:156–166

    CAS  PubMed  Google Scholar 

  27. Taylor DA, Atkins BZ, Hungspreugs P et al (1998) Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat Med 4:929–933

    CAS  PubMed  Google Scholar 

  28. Koh GY, Klug MG, Soonpaa MH et al (1993) Differentiation and long-term survival of C2C12 myoblast grafts in heart. J Clin Invest 92:1548–1554

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Dowell JD, Rubart M, Pasumarthi KB et al (2003) Myocyte and myogenic stem cell transplantation in the heart. Cardiovasc Res 58:336–350

    CAS  PubMed  Google Scholar 

  30. Murry CE, Wiseman RW, Schwartz SM et al (1996) Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest 98:2512–2523

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Leobon B, Garcin I, Menasche P et al (2003) Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc Natl Acad Sci U S A 100:7808–7811

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Ferrari G, Cusella-De Angelis G, Coletta M et al (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    CAS  PubMed  Google Scholar 

  33. Krause DS, Theise ND, Collector MI et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    CAS  PubMed  Google Scholar 

  34. Mezey E, Chandross KJ, Harta G et al (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782

    CAS  PubMed  Google Scholar 

  35. Bittner RE, Schofer C, Weipoltshammer K et al (1999) Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol 199:391–396

    CAS  PubMed  Google Scholar 

  36. Jackson KA, Majka SM, Wang H et al (2001) Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 107:1395–1402

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Orlic D, Kajstura J, Chimenti S et al (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705

    CAS  PubMed  Google Scholar 

  38. Murry CE, Soonpaa MH, Reinecke H et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    CAS  PubMed  Google Scholar 

  39. Balsam LB, Wagers AJ, Christensen JL et al (2004) Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428:668–673

    CAS  PubMed  Google Scholar 

  40. Rota M, Kajstura J, Hosoda T et al (2007) Bone marrow cells adopt the cardiomyogenic fate in vivo. Proc Natl Acad Sci U S A 104:17783–17788

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

    CAS  PubMed  Google Scholar 

  42. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    CAS  PubMed  Google Scholar 

  43. Phinney DG, Kopen G, Righter W et al (1999) Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 75:424–436

    CAS  PubMed  Google Scholar 

  44. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    CAS  PubMed  Google Scholar 

  45. Pittenger MF, Martin BJ (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95:9–20

    CAS  PubMed  Google Scholar 

  46. Haynesworth SE, Baber MA, Caplan AI (1992) Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13:69–80

    CAS  PubMed  Google Scholar 

  47. Alhadlaq A, Mao JJ (2004) Mesenchymal stem cells: isolation and therapeutics. Stem Cells Dev 13:436–448

    CAS  PubMed  Google Scholar 

  48. Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med 226:507–520

    CAS  Google Scholar 

  49. Fukuda K (2002) Molecular characterization of regenerated cardiomyocytes derived from adult mesenchymal stem cells. Congenit Anom 42:1–9

    CAS  Google Scholar 

  50. Makino S, Fukuda K, Miyoshi S et al (1999) Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 103:697–705

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Fukuda K (2003) Use of adult marrow mesenchymal stem cells for regeneration of cardiomyocytes. Bone Marrow Transplant 32:S25–S27

    CAS  PubMed  Google Scholar 

  52. Tomita S, Nakatani T, Fukuhara S et al (2002) Bone marrow stromal cells contract synchronously with cardiomyocytes in a coculture system. Jpn J Thorac Cardiovasc Surg 50:321–324

    PubMed  Google Scholar 

  53. Hakuno D, Fukuda K, Makino S et al (2002) Bone marrow-derived regenerated cardiomyocytes (CMG Cells) express functional adrenergic and muscarinic receptors. Circulation 105:380–386

    CAS  PubMed  Google Scholar 

  54. Bartholomew A, Sturgeon C, Siatskas M et al (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48

    PubMed  Google Scholar 

  55. Le Blanc K, Tammik L, Sundberg B et al (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20

    PubMed  Google Scholar 

  56. Tse WT, Pendleton JD, Beyer WM et al (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation 75:389–397

    CAS  PubMed  Google Scholar 

  57. Zimmet JM, Hare JM (2005) Emerging role for bone marrow derived mesenchymal stem cells in myocardial regenerative therapy. Basic Res Cardiol 100:471–481

    CAS  PubMed  Google Scholar 

  58. Ryan JM, Barry FP, Murphy JM et al (2005) Mesenchymal stem cells avoid allogeneic rejection. J Inflamm 2:8

    Google Scholar 

  59. Le Blanc K, Tammik C, Rosendahl K et al (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31:890–896

    PubMed  Google Scholar 

  60. Di Nicola M, Carlo-Stella C, Magni M et al (2002) Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843

    PubMed  Google Scholar 

  61. Wang JS, Shum-Tim D, Chedrawy E et al (2001) The coronary delivery of marrow stromal cells for myocardial regeneration: pathophysiologic and therapeutic implications. J Thorac Cardiovasc Surg 122:699–705

    CAS  PubMed  Google Scholar 

  62. Tomita S, Li RK, Weisel RD et al (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100:II247–II256

    CAS  PubMed  Google Scholar 

  63. Barbash IM, Chouraqui P, Baron J et al (2003) Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution. Circulation 108:863–868

    PubMed  Google Scholar 

  64. Silva GV, Litovsky S, Assad JA et al (2005) Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111:150–156

    CAS  PubMed  Google Scholar 

  65. Dai W, Hale SL, Martin BJ et al (2005) Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: short- and long-term effects. Circulation 112:214–223

    PubMed  Google Scholar 

  66. Tomita S, Mickle DA, Weisel RD et al (2002) Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 123:1132–1140

    PubMed  Google Scholar 

  67. Zeng L, Hu Q, Wang X et al (2007) Bioenergetic and functional consequences of bone marrow-derived multipotent progenitor cell transplantation in hearts with postinfarction left ventricular remodeling. Circulation 115:1866–1875

    PubMed  Google Scholar 

  68. Amado LC, Saliaris AP, Schuleri KH et al (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after MI. Proc Natl Acad Sci U S A 102:11474–11479

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    CAS  PubMed  Google Scholar 

  70. Masuda H, Asahara T (2003) Post-natal endothelial progenitor cells for neovascularization in tissue regeneration. Cardiovasc Res 58:390–398

    CAS  PubMed  Google Scholar 

  71. Lin Y, Weisdorf DJ, Solovey A et al (2000) Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 105:71–77

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Kocher AA, Schuster MD, Szabolcs MJ et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7:430–436

    CAS  PubMed  Google Scholar 

  73. Kawamoto A, Tkebuchava T, Yamaguchi J et al (2003) Intramyocardial transplantation of autologous endothelial progenitor cells for therapeutic neovascularization of myocardial ischemia. Circulation 107:461–468

    PubMed  Google Scholar 

  74. Lewis ID, Verfaillie CM (2000) Multi-lineage expansion potential of primitive hematopoietic progenitors: superiority of umbilical cord blood compared to mobilized peripheral blood. Exp Hematol 28:1087–1095

    CAS  PubMed  Google Scholar 

  75. Murohara T, Ikeda H, Duan J et al (2000) Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 105:1527–1536

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Mayani H, Lansdorp PM (1998) Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells. Stem Cells 16:153–165

    CAS  PubMed  Google Scholar 

  77. Kogler G, Sensken S, Airey JA et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200:123–135

    PubMed Central  PubMed  Google Scholar 

  78. Kim BO, Tian H, Prasongsukarn K et al (2005) Cell transplantation improves ventricular function after a MI: a preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation 112:I96–I104

    PubMed  Google Scholar 

  79. Ma N, Stamm C, Kaminski A et al (2005) Human cord blood cells induce angiogenesis following MI in NOD/scid-mice. Cardiovasc Res 66:45–54

    CAS  PubMed  Google Scholar 

  80. Hirata Y, Sata M, Motomura N et al (2005) Human umbilical cord blood cells improve cardiac function after MI. Biochem Biophys Res Commun 327:609–614

    CAS  PubMed  Google Scholar 

  81. MacLellan WR, Schneider MD (2000) Genetic dissection of cardiac growth control pathways. Annu Rev Physiol 62:289–319

    CAS  PubMed  Google Scholar 

  82. Rubart M, Field LJ (2006) Cardiac regeneration: repopulating the heart. Annu Rev Physiol 68:29–49

    CAS  PubMed  Google Scholar 

  83. Soonpaa MH, Field LJ (1998) Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 83:15–26

    CAS  PubMed  Google Scholar 

  84. Beltrami AP, Urbanek K, Kajstura J et al (2001) Evidence that human cardiac myocytes divide after MI. N Engl J Med 344:1750–1757

    CAS  PubMed  Google Scholar 

  85. Quaini F, Urbanek K, Beltrami AP et al (2002) Chimerism of the transplanted heart. N Engl J Med 346:5–15

    PubMed  Google Scholar 

  86. Anversa P, Kajstura J (1998) Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ Res 83:1–14

    CAS  PubMed  Google Scholar 

  87. Nadal-Ginard B, Kajstura J, Leri A et al (2003) Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res 92:139–150

    CAS  PubMed  Google Scholar 

  88. Anversa P, Sussman MA, Bolli R (2004) Molecular genetic advances in cardiovascular medicine: focus on the myocyte. Circulation 109:2832–2838

    PubMed  Google Scholar 

  89. Sussman MA, Anversa P (2004) Myocardial aging and senescence: where have the stem cells gone? Annu Rev Physiol 66:29–48

    CAS  PubMed  Google Scholar 

  90. Mouquet F, Pfister O, Jain M et al (2005) Restoration of cardiac progenitor cells after MI by self-proliferation and selective homing of bone marrow-derived stem cells. Circ Res 97:1090–1092

    CAS  PubMed  Google Scholar 

  91. Kucia M, Dawn B, Hunt G et al (2004) Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after MI. Circ Res 95:1191–1199

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Cerisoli F, Chimenti I, Gaetani R et al (2006) Kit-Positive Cardiac Stem Cells (CSCs) can be generated in damaged heart from bone marrow-derived cells. Circulation 114:II-164

    Google Scholar 

  93. Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells and mechanisms of myocardial regeneration. Physiol Rev 85:1373–1416

    CAS  PubMed  Google Scholar 

  94. Beltrami AP, Barlucchi L, Torella D et al (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114:763–776

    CAS  PubMed  Google Scholar 

  95. Wang X, Hu Q, Nakamura Y, Lee J, Zhang G, From AH, Zhang J. The Role of Sca-1+/CD31- Cardiac Progenitor Cell Population in Postinfarction LV Remodeling. Stem Cells. 2006;24(7):1779–88

    Google Scholar 

  96. Bearzi C, Rota M, Hosoda T et al (2007) Human cardiac stem cells. Proc Natl Acad Sci U S A 104:14068–14073

    CAS  PubMed Central  PubMed  Google Scholar 

  97. van Berlo JH, Kanisicak O, Maillet M et al (2014) C-Kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509:337–341

    PubMed Central  PubMed  Google Scholar 

  98. Oh H, Bradfute SB, Gallardo TD et al (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100:12313–12318

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Matsuura K, Nagai T, Nishigaki N et al (2004) Adult cardiac Sca-1-positive cells differentiate into beating cardiomyocytes. J Biol Chem 279:11384–11391

    CAS  PubMed  Google Scholar 

  100. Martin CM, Meeson AP, Robertson SM et al (2004) Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev Biol 265:262–275

    CAS  PubMed  Google Scholar 

  101. Pfister O, Mouquet F, Jain M et al (2005) CD31- but Not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res 97:52–61

    CAS  PubMed  Google Scholar 

  102. Laugwitz KL, Moretti A, Lam J et al (2005) Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433:647–653

    CAS  PubMed  Google Scholar 

  103. Messina E, De Angelis L, Frati G et al (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921

    CAS  PubMed  Google Scholar 

  104. Smith RR, Barile L, Cho HC et al (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908

    PubMed  Google Scholar 

  105. Dawn B, Stein AB, Urbanek K et al (2005) Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc Natl Acad Sci U S A 102:3766–3771

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Wang X, Hu Q, Nakamura Y et al (2006) The role of the sca-1+/CD31- cardiac progenitor cell population in postinfarction left ventricular remodeling. Stem Cells 24:1779–1788

    PubMed  Google Scholar 

  107. Urbanek K, Rota M, Cascapera S et al (2005) Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 97:663–673

    CAS  PubMed  Google Scholar 

  108. Linke A, Muller P, Nurzynska D et al (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci U S A 102:8966–8971

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Bearzi C, Muller P, Amano K et al (2006) Identification and characterization of cardiac stem cells in the pig heart. Circulation 114:II-125

    Google Scholar 

  110. Johnston P, Sasano T, Mills K et al (2006) Isolation, expansion and delivery of cardiac derived stem cells in a porcine model of MI. Circulation 114:II-125

    Google Scholar 

  111. Hosoda T, Bearzi C, Amano S et al (2006) Human cardiac progenitor cells regenerate cardiomyocytes and coronary vessels repairing the infarcted myocardium. Circulation 114:II-51

    Google Scholar 

  112. Torella D, Elliso GM, Karakikes I et al (2006) Biological properties and regenerative potential, in vitro and in vivo, of human cardiac stem cells isolated from each of the four chambers of the adult human heart. Circulation 114:II-87

    Google Scholar 

  113. Menasche P, Hagege AA, Vilquin JT et al (2003) Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J Am Coll Cardiol 41:1078–1083

    PubMed  Google Scholar 

  114. Herreros J, Prosper F, Perez A et al (2003) Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute MI. Eur Heart J 24:2012–2020

    PubMed  Google Scholar 

  115. Pagani FD, DerSimonian H, Zawadzka A et al (2003) Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. J Am Coll Cardiol 41:879–888

    PubMed  Google Scholar 

  116. Siminiak T, Kalawski R, Fiszer D et al (2004) Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury: phase I clinical study with 12 months of follow-up. Am Heart J 148:531–537

    PubMed  Google Scholar 

  117. Smits PC, van Geuns RJ, Poldermans D et al (2003) Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: clinical experience with six-month follow-up. J Am Coll Cardiol 42:2063–2069

    PubMed  Google Scholar 

  118. Siminiak T, Fiszer D, Jerzykowska O et al (2005) Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: the POZNAN trial. Eur Heart J 26:1188–1195

    PubMed  Google Scholar 

  119. Hagege AA, Carrion C, Menasche P et al (2003) Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet 361:491–492

    PubMed  Google Scholar 

  120. Assmus B, Schachinger V, Teupe C et al (2002) Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106:3009–3017

    PubMed  Google Scholar 

  121. Schachinger V, Assmus B, Britten MB et al (2004) Transplantation of progenitor cells and regeneration enhancement in acute MI: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 44:1690–1699

    PubMed  Google Scholar 

  122. Wollert KC, Meyer GP, Lotz J et al (2004) Intracoronary autologous bone-marrow cell transfer after MI: the BOOST randomised controlled clinical trial. Lancet 364:141–148

    PubMed  Google Scholar 

  123. Schachinger V, Erbs S, Elsasser A et al (2006) Intracoronary bone marrow-derived progenitor cells in acute MI. N Engl J Med 355:1210–1221

    CAS  PubMed  Google Scholar 

  124. Lunde K, Solheim S, Aakhus S et al (2006) Intracoronary injection of mononuclear bone marrow cells in acute MI. N Engl J Med 355:1199–1209

    CAS  PubMed  Google Scholar 

  125. Janssens S, Dubois C, Bogaert J et al (2006) Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation MI: double-blind, randomised controlled trial. Lancet 367:113–121

    PubMed  Google Scholar 

  126. Seeger F, Tonn T, Krzossok N et al (2006) Cell isolation procedures matter: a comparison of different isolation protocols of bone marrow mononuclear cells used for cell therapy in patients with acute MI. Circulation 114:II-51

    Google Scholar 

  127. Assmus B, Honold J, Schachinger V et al (2006) Transcoronary transplantation of progenitor cells after MI. N Engl J Med 355:1222–1232

    CAS  PubMed  Google Scholar 

  128. Chen SL, Fang WW, Qian J et al (2004) Improvement of cardiac function after transplantation of autologous bone marrow mesenchymal stem cells in patients with acute MI. Chin Med J (Engl) 117:1443–1448

    Google Scholar 

  129. Chen SL, Fang WW, Ye F et al (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute MI. Am J Cardiol 94:92–95

    PubMed  Google Scholar 

  130. Zambrano J, Traverse JH, Henry T et al (2007) Abstract 1014: The impact of intravenous allogeneic human mesenchymal stem cells (ProvacelTM) on ejection fraction in patients with myocardial infarction. II_202

    Google Scholar 

  131. Erbs S, Linke A, Adams V et al (2005) Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res 97:756–762

    CAS  PubMed  Google Scholar 

  132. Malliaras K, Makkar RR, Smith RR et al (2014) Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem Cells to reverse ventricular dysfunction). J Am Coll Cardiol 63:110–122

    PubMed Central  PubMed  Google Scholar 

  133. Chugh AR, Beache GM, Loughran JH et al (2012) Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation 126:S54–S64

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Miyahara Y, Nagaya N, Kataoka M et al (2006) Monolayered mesenchymal stem cells repair scarred myocardium after MI. Nat Med 12:459–465

    CAS  PubMed  Google Scholar 

  135. Ye L, Zhang P, Duval S et al (2013) Thymosin β4 increases the potency of transplanted mesenchymal stem cells for myocardial repair. Circulation 128:S32–S41

    CAS  PubMed  Google Scholar 

  136. Wendel JS, Ye L, Zhang P et al (2014) Functional consequences of a tissue-engineered myocardial patch for cardiac repair in a rat infarct model. Tissue Eng Part A 20:1325–1335

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Ye L, Zimmermann WH, Garry DJ et al (2013) Patching the heart: cardiac repair from within and outside. Circ Res 113:922–932

    CAS  PubMed  Google Scholar 

  138. Pfeffer MA, Braunwald E (1990) Ventricular remodeling after MI. Experimental observations and clinical implications. Circulation 81:1161–1172

    CAS  PubMed  Google Scholar 

  139. Jameel NM, Hu Q, Zhang J (2014) Myocytes oxygenation and high energy phosphate levels during hypoxia. PLoS One 9, e101317

    PubMed Central  PubMed  Google Scholar 

  140. Ingwall JS, Weiss RG (2004) Is the failing heart energy starved? On using chemical energy to support cardiac function. Circ Res 95:135–145

    CAS  PubMed  Google Scholar 

  141. Katz AM (1998) Is the failing heart energy depleted? Cardiol Clin 16:633–644

    CAS  PubMed  Google Scholar 

  142. Xiong Q, Ye L, Zhang P et al (2013) Functional consequences of human induced pluripotent stem cell therapy: myocardial ATP turnover rate in the in vivo swine heart with postinfarction remodeling. Circulation 127:997–1008

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Reffelmann T, Dow JS, Dai W et al (2003) Transplantation of neonatal cardiomyocytes after permanent coronary artery occlusion increases regional blood flow of infarcted myocardium. J Mol Cell Cardiol 35:607–613

    CAS  PubMed  Google Scholar 

  144. Ziegelhoeffer T, Fernandez B, Kostin S et al (2004) Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ Res 94:230–238

    CAS  PubMed  Google Scholar 

  145. Gnecchi M, He H, Liang OD et al (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11:367–368

    CAS  PubMed  Google Scholar 

  146. Gnecchi M, He H, Noiseux N et al (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20:661–669

    CAS  PubMed  Google Scholar 

  147. Kinnaird T, Stabile E, Burnett MS et al (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685

    CAS  PubMed  Google Scholar 

  148. Kinnaird T, Stabile E, Burnett MS et al (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549

    CAS  PubMed  Google Scholar 

  149. Xu X, Xu Z, Xu Y et al (2005) Effects of mesenchymal stem cell transplantation on extracellular matrix after MI in rats. Coron Artery Dis 16:245–255

    PubMed  Google Scholar 

  150. Xu X, Xu Z, Xu Y et al (2005) Selective down-regulation of extracellular matrix gene expression by bone marrow derived stem cell transplantation into infarcted myocardium. Circ J 69:1275–1283

    CAS  PubMed  Google Scholar 

  151. Kang HJ, Lee HY, Na SH et al (2006) Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute MI versus old MI: the MAGIC Cell-3-DES randomized, controlled trial. Circulation 114:I145–I151

    PubMed  Google Scholar 

  152. Ceradini DJ, Kulkarni AR, Callaghan MJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10:858–864

    CAS  PubMed  Google Scholar 

  153. Askari AT, Unzek S, Popovic ZB et al (2003) Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362:697–703

    CAS  PubMed  Google Scholar 

  154. Limana F, Germani A, Zacheo A et al (2005) Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation. Circ Res 97:e73–e83

    CAS  PubMed  Google Scholar 

  155. Lu L, Zhang JQ, Ramires FJ et al (2004) Molecular and cellular events at the site of MI: from the perspective of rebuilding myocardial tissue. Biochem Biophys Res Commun 320:907–913

    CAS  PubMed  Google Scholar 

  156. Zhang M, Methot D, Poppa V et al (2001) Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J Mol Cell Cardiol 33:907–921

    CAS  PubMed  Google Scholar 

  157. Mangi AA, Noiseux N, Kong D et al (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9:1195–1201

    CAS  PubMed  Google Scholar 

  158. Lim SY, Kim YS, Ahn Y et al (2006) The effects of mesenchymal stem cells transduced with Akt in a porcine MI model. Cardiovasc Res 70:530–542

    CAS  PubMed  Google Scholar 

  159. Cheng JQ, Lindsley CW, Cheng GZ et al (2005) The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene 24:7482–7492

    CAS  PubMed  Google Scholar 

  160. Yau TM, Kim C, Li G et al (2005) Maximizing ventricular function with multimodal cell-based gene therapy. Circulation 112:I123–I128

    PubMed  Google Scholar 

  161. Askari A, Unzek S, Goldman CK et al (2004) Cellular, but not direct, adenoviral delivery of vascular endothelial growth factor results in improved left ventricular function and neovascularization in dilated ischemic cardiomyopathy. J Am Coll Cardiol 43:1908–1914

    CAS  PubMed  Google Scholar 

  162. Schuh A, Breuer S, Al Dashti R et al (2005) Administration of vascular endothelial growth factor adjunctive to fetal cardiomyocyte transplantation and improvement of cardiac function in the rat model. J Cardiovasc Pharmacol Ther 10:55–66

    CAS  PubMed  Google Scholar 

  163. Tang YL, Tang Y, Zhang YC et al (2005) Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol 46:1339–1350

    CAS  PubMed  Google Scholar 

  164. Suzuki K, Murtuza B, Beauchamp JR et al (2004) Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. FASEB J 18:1153–1155

    CAS  PubMed  Google Scholar 

  165. Jo JI, Nagaya N, Miyahara Y et al (2007) Transplantation of genetically engineered mesenchymal stem cells improves cardiac function in rats with MI: benefit of a novel nonviral vector, Cationized Dextran. Tissue Eng 13:313–322

    CAS  PubMed  Google Scholar 

  166. Davis ME, Hsieh PC, Grodzinsky AJ et al (2005) Custom design of the cardiac microenvironment with biomaterials. Circ Res 97:8–15

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Davis ME, Hsieh PC, Takahashi T et al (2006) Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for MI. Proc Natl Acad Sci U S A 103:8155–8160

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyi Zhang MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, J., Garry, D.J. (2015). Cell Transplantation for Ischemic Heart Disease. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-19464-6_40

Download citation

Publish with us

Policies and ethics