Skip to main content

Harnessing Cardiopulmonary Interactions to Improve Circulation and Outcomes After Cardiac Arrest and Other States of Low Blood Pressure

  • Chapter
Handbook of Cardiac Anatomy, Physiology, and Devices

Abstract

This chapter reviews the traditional therapies used to treat sudden cardiac arrest and shock (cardiopulmonary resuscitation or CPR) and presents modifications of this standard technique to enhance the delivery of oxygenated blood to the heart and brain. In addition, the authors provide descriptions of novel noninvasive technologies that can be used to increase the chance for survival, in particular technologies that provide intrathoracic pressure regulation (IPR) therapy to improve perfusion in profound states of shock. Furthermore, impedance threshold devices and active compression-decompression (ACD) CPR treatment are described, and the results of numerous animal and clinical studies are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACD:

Active compression-decompression

ACD-CPR:

Active compression-decompression cardiopulmonary resuscitation

BLS:

Basic life support

CePP:

Cerebral perfusion pressure

CPP:

Coronary perfusion pressure

CPR:

Cardiopulmonary resuscitation

DBP:

Diastolic blood pressure

EMS:

Emergency medical services

ETP:

Endotracheal pressure

FDA:

Food and Drug Administration

ICP:

Intracranial pressure

IPR:

Intrathoracic pressure regulation

ITD:

Impedance threshold device

ITP:

Intratracheal pressure

ITPR:

Intrathoracic pressure regulator

LBNP:

Lower body negative pressure

MAP:

Mean arterial pressure

PEA:

Pulseless electrical activity

RA:

Right atrial

ROC:

Resuscitation Outcomes Consortium

ROSC:

Return of spontaneous circulation

SBP:

Systolic blood pressure

VF:

Ventricular fibrillation

References

  1. Niemann JT (1990) Cardiopulmonary resuscitation. N Engl J Med 327:1075–1080

    Google Scholar 

  2. Eisenberg MS, Horwood BT, Cummins RO, Reynolds-Haertle R, Hearne TR (1990) Cardiac arrest and resuscitation: a tale of 29 cities. Ann Emerg Med 19:179–186

    Article  CAS  PubMed  Google Scholar 

  3. Lurie KG, Voelckel WG, Zielinski T et al (2001) Improving standard cardiopulmonary resuscitation with an inspiratory impedance threshold valve in a porcine model of cardiac arrest. Anesth Analg 93:649–655

    Article  CAS  PubMed  Google Scholar 

  4. Voelckel WG, Lurie KG, Sweeney M et al (2002) Effects of active compression-decompression cardiopulmonary resuscitation with the inspiratory threshold valve in a young porcine model of cardiac arrest. Pediatr Res 51:523–527

    Article  PubMed  Google Scholar 

  5. Lurie K, Voelckel W, Plaisance P et al (2000) Use of an inspiratory impedance threshold valve during cardiopulmonary resuscitation: a progress report. Resuscitation 44:219–230

    Article  CAS  PubMed  Google Scholar 

  6. Lurie KG, Lindner KH (1997) Recent advances in cardiopulmonary resuscitation. J Cardiovasc Electrophysiol 8:584–600

    Article  CAS  PubMed  Google Scholar 

  7. Lurie KG, Mulligan KA, McKnite S, Detloff B, Lindstrom P, Lindner KH (1998) Optimizing standard cardiopulmonary resuscitation with an inspiratory impedance threshold valve. Chest 113:1084–1090

    Article  CAS  PubMed  Google Scholar 

  8. Lurie KG, Zielinski T, McKnite S, Aufderheide T, Voelckel W (2002) Use of an inspiratory impedance valve improves neurologically intact survival in a porcine model of ventricular fibrillation. Circulation 105:124–129

    Article  PubMed  Google Scholar 

  9. Lurie KG, Zielinski T, Voelckel W, McKnite S, Plaisance P (2002) Augmentation of ventricular preload during treatment of cardiovascular collapse and cardiac arrest. Crit Care Med 30:S162–S165

    Article  PubMed  Google Scholar 

  10. Lurie KG, Coffeen P, Shultz J, McKnite S, Detloff B, Mulligan K (1995) Improving active compression-decompression cardiopulmonary resuscitation with an inspiratory impedance valve. Circulation 91:1629–1632

    Article  CAS  PubMed  Google Scholar 

  11. Aufderheide T (2007) A tale of seven EMS systems: an impedance threshold device and improved CPR techniques double survival rates after out-of-hospital cardiac arrest. Circulation 116:II-936

    Article  Google Scholar 

  12. Aufderheide TP, Sigurdsson G, Pirrallo RG et al (2004) Hyperventilation-induced hypotension during cardiopulmonary resuscitation. Circulation 109:1960–1965

    Article  PubMed  Google Scholar 

  13. Aufderheide TP, Lurie KG (2004) Death by hyperventilation: a common and life-threatening problem during cardiopulmonary resuscitation. Crit Care Med 32:S345–S351

    Article  PubMed  Google Scholar 

  14. Yannopoulos D, McKnite S, Aufderheide TP et al (2005) Effects of incomplete chest wall decompression during cardiopulmonary resuscitation on coronary and cerebral perfusion pressures in a porcine model of cardiac arrest. Resuscitation 64:363–372

    Article  PubMed  Google Scholar 

  15. Holzer M, Sterz F (2003) Therapeutic hypothermia after cardiopulmonary resuscitation. Expert Rev Cardiovasc Ther 1:317–325

    Article  PubMed  Google Scholar 

  16. Holzer M, Bernard SA, Hachimi-Idrissi S, Roine RO, Sterz F, Mullner M (2005) Hypothermia for neuroprotection after cardiac arrest: systematic review and individual patient data meta-analysis. Crit Care Med 33:414–418

    Article  PubMed  Google Scholar 

  17. Holzer M, Behringer W, Schorkhuber W et al (1997) Mild hypothermia and outcome after CPR. Acta Anaesthesiol Scand Suppl 111:55–58

    CAS  PubMed  Google Scholar 

  18. Berg RA, Hemphill R, Abella BS et al (2010) Part 5: adult basic life support: 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation 122:S685–S705

    Article  PubMed  Google Scholar 

  19. Aufderheide TP, Pirrallo RG, Yannopoulos D et al (2005) Incomplete chest wall decompression: a clinical evaluation of CPR performance by EMS personnel and assessment of alternative manual chest compression-decompression techniques. Resuscitation 64:353–362

    Article  PubMed  Google Scholar 

  20. Thigpen K, Davis SP, Basol R et al (2010) Implementing the 2005 American Heart Association guidelines, including use of the impedance threshold device, improves hospital discharge rate after in-hospital cardiac arrest. Respir Care 55:1014–1019

    PubMed  Google Scholar 

  21. Davis S, Thigpen K, Basol R, Aufderheide T (2008) Implementation of the 2005 American Heart Association guidelines together with the impedance threshold device improves hospital discharge rates after in-hospital cardiac arrest. Circulation 118S:S765

    Google Scholar 

  22. Lick CJ, Aufderheide TP, Niskanen RA et al (2011) Take heart America: a comprehensive, community-wide, systems-based approach to the treatment of cardiac arrest. Crit Care Med 39:26–33

    Article  PubMed  Google Scholar 

  23. Aufderheide TP, Nichol G, Rea TD et al (2011) A trial of an impedance threshold device in out-of-hospital cardiac arrest. N Engl J Med 365:798–806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Idris A, Guffey D, Pepe PE et al (2011) Compression rate and survival during out-of-hospital cardiopulmonary resuscitation at resuscitation outcomes consortium (roc) regional sites. Circulation 124:A289

    Article  Google Scholar 

  25. Yannopoulos D, Abella BS, Duval S, Aufderheide T (2014) The effect of CPR quality: a potential confounder of CPR clinical trials. Circulation 130:A9

    Google Scholar 

  26. Cohen TJ, Tucker KJ, Lurie KG et al (1992) Active compression-decompression. A new method of cardiopulmonary resuscitation. JAMA 267:2916–2923

    Article  CAS  PubMed  Google Scholar 

  27. Lindner KH, Pfenninger EG, Lurie KG, Schurmann W, Lindner IM, Ahnefeld FW (1993) Effects of active compression-decompression resuscitation on myocardial and cerebral blood flow in pigs. Circulation 88:1254–1263

    Article  CAS  PubMed  Google Scholar 

  28. Plaisance P, Adnet F, Vicaut E et al (1997) Benefit of active compression-decompression cardiopulmonary resuscitation as a prehospital advanced cardiac life support. A randomized multicenter study. Circulation 95:955–961

    Article  CAS  PubMed  Google Scholar 

  29. Plaisance P, Lurie KG, Vicaut E et al (1999) A comparison of standard cardiopulmonary resuscitation and active compression-decompression resuscitation for out-of-hospital cardiac arrest. N Engl J Med 341:569–575

    Article  CAS  PubMed  Google Scholar 

  30. Plaisance P, Lurie KG, Vicaut E et al (2004) Evaluation of an impedance threshold device in patients receiving active compression-decompression cardiopulmonary resuscitation for out of hospital cardiac arrest. Resuscitation 61:265–271

    Article  PubMed  Google Scholar 

  31. Plaisance P, Lurie KG, Payen D (2000) Inspiratory impedance during active compression-decompression cardiopulmonary resuscitation: a randomized evaluation in patients in cardiac arrest. Circulation 101:989–994

    Article  CAS  PubMed  Google Scholar 

  32. Lurie KG (1997) Recent advances in mechanical methods of cardiopulmonary resuscitation. Acta Anaesthesiol Scand Suppl 111:49–52

    CAS  PubMed  Google Scholar 

  33. Goetting MG, Paradis NA, Appleton TJ, Rivers EP, Martin GB, Nowak RM (1991) Aortic-carotid artery pressure differences and cephalic perfusion pressure during cardiopulmonary resuscitation in humans. Crit Care Med 19:1012–1017

    Article  CAS  PubMed  Google Scholar 

  34. Paradis NA, Martin GB, Rosenberg J et al (1991) The effect of standard- and high-dose epinephrine on coronary perfusion pressure during prolonged cardiopulmonary resuscitation. JAMA 265:1139–1144

    Article  CAS  PubMed  Google Scholar 

  35. Bahlmann L, Klaus S, Baumeier W et al (2003) Brain metabolism during cardiopulmonary resuscitation assessed with microdialysis. Resuscitation 59:255–260

    Article  CAS  PubMed  Google Scholar 

  36. Raedler C, Voelckel WG, Wenzel V et al (2002) Vasopressor response in a porcine model of hypothermic cardiac arrest is improved with active compression-decompression cardiopulmonary resuscitation using the inspiratory impedance threshold valve. Anesth Analg 95:1496–1502

    Article  PubMed  Google Scholar 

  37. Wolcke BB, Mauer DK, Schoefmann MF et al (2003) Comparison of standard cardiopulmonary resuscitation versus the combination of active compression-decompression cardiopulmonary resuscitation and an inspiratory impedance threshold device for out-of-hospital cardiac arrest. Circulation 108:2201–2205

    Article  PubMed  Google Scholar 

  38. Plaisance P, Soleil C, Lurie KG, Vicaut E, Ducros L, Payen D (2005) Use of an inspiratory impedance threshold device on a facemask and endotracheal tube to reduce intrathoracic pressures during the decompression phase of active compression-decompression cardiopulmonary resuscitation. Crit Care Med 33:990–994

    Article  PubMed  Google Scholar 

  39. (2000) Guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Part 2: ethical aspects of CPR and ECC. Circulation 102:I12-21

    Google Scholar 

  40. Aufderheide TP, Frascone RJ, Wayne MA et al (2011) Standard cardiopulmonary resuscitation versus active compression-decompression cardiopulmonary resuscitation with augmentation of negative intrathoracic pressure for out-of-hospital cardiac arrest: a randomised trial. Lancet 377:301–311

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wayne M, Tupper D, Swor R, Frascone R, Mahoney B, Lurie KG (2012) Improvement of long-term neurological function after sudden cardiac death and resuscitation: impact of CPR method and post-resuscitation care. Prehosp Emerg Care 16:152–153

    Google Scholar 

  42. Frascone RJ, Wayne MA, Swor RA et al (2013) Treatment of non-traumatic out-of-hospital cardiac arrest with active compression decompression cardiopulmonary resuscitation plus an impedance threshold device. Resuscitation 84:1214–1222

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fritsch-Yelle JM, Convertino VA, Schlegel TT (1999) Acute manipulations of plasma volume alter arterial pressure responses during Valsalva maneuvers. J Appl Physiol 86:1852–1857

    CAS  PubMed  Google Scholar 

  44. Shekerdemian LS, Bush A, Shore DF, Lincoln C, Redington AN (1997) Cardiopulmonary interactions after Fontan operations: augmentation of cardiac output using negative pressure ventilation. Circulation 96:3934–3942

    Article  CAS  PubMed  Google Scholar 

  45. Lurie KG, Zielinski TM, McKnite SH et al (2004) Treatment of hypotension in pigs with an inspiratory impedance threshold device: a feasibility study. Crit Care Med 32:1555–1562

    Article  PubMed  Google Scholar 

  46. Marino BS, Yannopoulos D, Sigurdsson G et al (2004) Spontaneous breathing through an inspiratory impedance threshold device augments cardiac index and stroke volume index in a pediatric porcine model of hemorrhagic hypovolemia. Crit Care Med 32:S398–S405

    Article  PubMed  Google Scholar 

  47. Sigurdsson G, Yannopoulos D, McKnite SH, Sondeen JL, Benditt DG, Lurie KG (2006) Effects of an inspiratory impedance threshold device on blood pressure and short term survival in spontaneously breathing hypovolemic pigs. Resuscitation 68:399–404

    Article  PubMed  Google Scholar 

  48. Metzger A, Rees J, Segal N et al (2013) “Fluidless” resuscitation with permissive hypotension via impedance threshold device therapy compared with normal saline resuscitation in a porcine model of severe hemorrhage. J Trauma Acute Care Surg 75:S203–S209

    Article  PubMed  Google Scholar 

  49. Convertino VA, Ratliff DA, Crissey J, Doerr DF, Idris AH, Lurie KG (2005) Effects of inspiratory impedance on hemodynamic responses to a squat-stand test in human volunteers: implications for treatment of orthostatic hypotension. Eur J Appl Physiol 94:392–399

    Article  PubMed  Google Scholar 

  50. Convertino VA, Ratliff DA, Ryan KL et al (2004) Hemodynamics associated with breathing through an inspiratory impedance threshold device in human volunteers. Crit Care Med 32:S381–S386

    Article  PubMed  Google Scholar 

  51. Idris A, Convertino VA, Ratliff MS et al (2007) Imposed power of breathing associated with use of an impedance threshold device. Respir Care 52:177–183

    PubMed  Google Scholar 

  52. Milic-Emili J (1991) The lung: scientific foundations. Raven Press, New York

    Google Scholar 

  53. Cooke WH, Ryan KL, Convertino VA (2004) Lower body negative pressure as a model to study progression to acute hemorrhagic shock in humans. J Appl Physiol 96:1249–1261

    Article  PubMed  Google Scholar 

  54. Hinojosa-Laborde C, Shade RE, Muniz GW et al (2014) Validation of lower body negative pressure as an experimental model of hemorrhage. J Appl Physiol 116:406–415

    Article  PubMed  PubMed Central  Google Scholar 

  55. Convertino VA, Cooke WH, Lurie KG (2005) Inspiratory resistance as a potential treatment for orthostatic intolerance and hemorrhagic shock. Aviat Space Environ Med 76:319–325

    PubMed  Google Scholar 

  56. Smith SW, Parquette B, Lindstrom D, Metzger AK, Kopitzke J, Clinton J (2010) An impedance threshold device increases blood pressure in hypotensive patients. J Emerg Med 41:549–558

    Article  PubMed  Google Scholar 

  57. Wampler D, Convertino VA, Weeks S, Hernandez M, Larrumbide J, Manifold C (2014) Use of an impedance threshold device in spontaneously breathing patients with hypotension secondary to trauma: an observational cohort feasibility study. J Trauma Acute Care Surg 77:S140–S145

    Article  PubMed  Google Scholar 

  58. Yannopoulos D, Nadkarni VM, McKnite SH et al (2005) Intrathoracic pressure regulator during continuous-chest-compression advanced cardiac resuscitation improves vital organ perfusion pressures in a porcine model of cardiac arrest. Circulation 112:803–811

    Article  PubMed  Google Scholar 

  59. Yannopoulos D, Metzger A, McKnite S et al (2006) Intrathoracic pressure regulation improves vital organ perfusion pressures in normovolemic and hypovolemic pigs. Resuscitation 70:445–453

    Article  PubMed  Google Scholar 

  60. Yannopoulos D, McKnite S, Metzger A, Lurie KG (2007) Intrathoracic pressure regulation improves 24-hour survival in a porcine model of hypovolemic shock. Anesth Analg 104:157–162

    Article  PubMed  Google Scholar 

  61. Segal N, Parquette B, Ziehr J, Yannopoulos D, Lindstrom D (2013) Intrathoracic pressure regulation during cardiopulmonary resuscitation: a feasibility case-series. Resuscitation 84:450–453

    Article  PubMed  Google Scholar 

  62. Huffmyer JL, Groves DS, Desouza DG, Littlewood KE, Thiele RH, Nemergut EC (2011) The effect of the intrathoracic pressure regulator on hemodynamics and cardiac output. Shock 35:114–116

    Article  PubMed  Google Scholar 

  63. Kiehna E, Huffmyer J, Thiele R, Scalzo D, Nemergut E (2013) Utilizing the intrathoracic pressure regulator to lower intracranial pressure in patients with altered intracranial elastance: a pilot study. J Neurosurg 119:756–759

    Article  PubMed  Google Scholar 

  64. Sigurdsson G, McKnite SH, Sondeen JL, Benditt DB (2005) Extending the golden hour of hemorrhagic shock in pigs with an inspiratory impedance threshold valve. Paper presented at Critical Care in Medicine, 2005

    Google Scholar 

  65. Birch M, Beebe D, Kwon Y et al (2010) A novel intrathoracic pressure regulator improves hemodynamics in hypotensive patients during surgery. Circulation 122:A27

    Google Scholar 

  66. Cinel I, Goldfarb R, Carcasses P et al (2008) Intrathoracic pressure regulation augments cardiac index in porcine peritonitis. Crit Care Med 36:A6

    Google Scholar 

  67. Cinel I, Goldfarb RD, Metzger A et al (2014) Biphasic intra-thoracic pressure regulation augments cardiac index during porcine peritonitis: a feasibility study. J Med Eng Technol 38:49–54

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Metzger PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Metzger, A., Lurie, K. (2015). Harnessing Cardiopulmonary Interactions to Improve Circulation and Outcomes After Cardiac Arrest and Other States of Low Blood Pressure. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-19464-6_38

Download citation

Publish with us

Policies and ethics