Skip to main content

Abstract

The modern era of cardiac surgery is largely considered to have begun in the animal research laboratories. Today, animal models continue to be used for the study of cardiovascular diseases and are required for the preclinical assessment of pharmaceuticals, mechanical devices, therapeutic procedures, and/or continuation therapies. This chapter was written to provide readers and potential investigators with important background information necessary for the process of matching an experimental hypothesis to an animal species that will serve as an appropriate model for studying a specific cardiovascular disease or for testing a given medical device. A review of the current animal models used in cardiac research is provided and arranged by disease state. Critical factors to consider when choosing an appropriate animal model including costs, reproducibility, and degree of similarity of the model to human disease are discussed. Thus, this chapter can be utilized as a practical guide for planning of research protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals (2011) Guide for the Care and Use of Laboratory Animals, 8th edition Washington (DC): National Academies Press (US)

    Google Scholar 

  2. Gross DR (ed) (1994) Animal models in cardiovascular research, 2nd edn. Kluwer Academic Press, Dordrecht, p 494

    Google Scholar 

  3. Ettinger SJ (2000) Congenital heart diseases. In: Ettinger SJ, Feldman EC (eds) Textbook of veterinary internal medicine: diseases of the dog and cat. WB Saunders, Philadelphia, pp 737–787

    Google Scholar 

  4. Turk JR, Root CR (1983) Necropsy of the canine heart: a simple technique for quantifying ventricular hypertrophy and valvular alterations. Comp Cont Ed Pract Vet 5:905–906

    Google Scholar 

  5. Swindle MM, Makin A, Herron AJ, Clubb FJ Jr, Frazier KS (2012) Swine as models in biomedical research and toxicology testing. Vet Pathol 49:344–356

    Article  CAS  PubMed  Google Scholar 

  6. Ahlberg SE, Bateman MG, Eggen MD et al (2013) Animal models for cardiac valve research. In: Iaizzo PA, Bianco RW, Hill AJ, St. Louis JD (eds) Heart valves: from design to clinical implantation. Springer, New York

    Google Scholar 

  7. Breckenridge R (2010) Heart failure and mouse models. Dis Model Mech 3:138–143

    Article  PubMed  Google Scholar 

  8. Haworth RA, Hunter DR, Berkoff HA, Moss RL (1983) Metabolic cost of the stimulated beating of isolated adult rat heart cells in suspension. Circ Res 52:342–351

    Article  CAS  PubMed  Google Scholar 

  9. Spieckermann PG, Piper HM (1985) Oxygen demand of calcium-tolerant adult cardiac myocytes. Basic Res Cardiol 80:71–74

    PubMed  Google Scholar 

  10. Claycomb WC, Lanson NA Jr, Stallworth BS et al (1998) HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci U S A 95:2979–2984

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Niggli E (1988) A laser diffraction system with improved sensitivity for long-time measurements of sarcomere dynamics in isolated cardiac myocytes. Pflugers Arch 411:462–468

    Article  CAS  PubMed  Google Scholar 

  12. Roos KP, Brady AJ, Tan ST (1982) Direct measurement of sarcomere length from isolated cardiac cells. Am J Physiol 242:H68–H78

    CAS  PubMed  Google Scholar 

  13. Roos KP, Brady AJ (1982) Individual sarcomere length determination from isolated cardiac cells using high-resolution optical microscopy and digital image processing. Biophys J 40:233–244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Murphy MP, Hohl C, Brierley GP, Altschuld RA (1982) Release of enzymes from adult rat heart myocytes. Circ Res 51:560–568

    Article  CAS  PubMed  Google Scholar 

  15. Tung L (1986) An ultrasensitive transducer for measurement of isometric contractile force from single heart cells. Pflugers Arch 407:109–115

    Article  CAS  PubMed  Google Scholar 

  16. Chinchoy E, Soule CL, Houlton AJ et al (2000) Isolated four-chamber working swine heart model. Ann Thorac Surg 70:1607–1614

    Article  CAS  PubMed  Google Scholar 

  17. Hill AJ, Coles JA, Sigg DC, Laske TG, Iaizzo PA (2003) Images of the human coronary sinus ostium obtained from isolated working hearts. Ann Thorac Surg 76:2108

    Article  PubMed  Google Scholar 

  18. Schechter MA, Southerland KW, Feger BJ et al (2014) An isolated working heart system for large animal models. J Vis Exp 11:88

    Google Scholar 

  19. Neely JR, Liebermeister H, Morgan HE (1967) Effect of pressure development on membrane transport of glucose in isolated rat heart. Am J Physiol 212:815–822

    CAS  PubMed  Google Scholar 

  20. Wicomb WN, Cooper DK, Barnard CN (1982) Twenty-four-hour preservation of the pig heart by a portable hypothermic perfusion system. Transplantation 34:246–250

    Article  CAS  PubMed  Google Scholar 

  21. Dunphy G, Richter HW, Azodi M et al (1999) The effects of mannitol, albumin, and cardioplegia enhancers on 24-h rat heart preservation. Am J Physiol 276:H1591–H1598

    CAS  PubMed  Google Scholar 

  22. Menasche P, Hricak B, Pradier F et al (1993) Efficacy of lactobionate-enriched cardioplegic solution in preserving compliance of cold-stored heart transplants. J Heart Lung Transplant 12:1053–1061

    CAS  PubMed  Google Scholar 

  23. Gallegos RP, Nockel PJ, Rivard AL, Bianco RW (2005) The current state of in-vivo pre-clinical animal models for heart valve evaluation. J Heart Valve Dis 14:423–432

    PubMed  Google Scholar 

  24. Taylor DE, Whamond JS (1975) A method of producing graded stenosis of the aortic and mitral valves in sheep for fluid dynamic studies. J Physiol 244:16P–17P

    CAS  PubMed  Google Scholar 

  25. Su-Fan Q, Brum JM, Kaye MP, Bove AA (1984) A new technique for producing pure aortic stenosis in animals. Am J Physiol 246:H296–H301

    CAS  PubMed  Google Scholar 

  26. Rogers WA, Bishop SP, Hamlin RL (1971) Experimental production of supravalvular aortic stenosis in the dog. J Appl Physiol 30:917–920

    CAS  PubMed  Google Scholar 

  27. Spratt JA, Olsen CO, Tyson GS Jr, Glower DD Jr, Davis JW, Rankin JS (1983) Experimental mitral regurgitation. Physiological effects of correction on left ventricular dynamics. J Thorac Cardiovasc Surg 86:479–489

    CAS  PubMed  Google Scholar 

  28. Swindle MM, Adams RJ (eds) (1988) Experimental surgery and physiology: induced animals models of human disease. Williams & Wilkins, Philadelphia

    Google Scholar 

  29. Donnelly KB (2008) Cardiac valvular pathology: comparative pathology and animal models of acquired cardiac valvular diseases. Toxicol Pathol 36:204–217

    Article  CAS  PubMed  Google Scholar 

  30. Bianco RW, St Cyr JA, Schneider JR et al (1986) Canine model for long-term evaluation of prosthetic mitral valves. J Surg Res 41:134–140

    Article  CAS  PubMed  Google Scholar 

  31. Grehan JF, Hilbert SL, Ferrans VJ, Droel JS, Salerno CT, Bianco RW (2000) Development and evaluation of a swine model to assess the preclinical safety of mechanical heart valves. J Heart Valve Dis 9:710–719, discussion 719–720

    CAS  PubMed  Google Scholar 

  32. Sider KL, Blaser MC, Simmons CA (2011) Animal models of calcific aortic valve disease. Int J Inflam 2011:364310

    Article  PubMed Central  PubMed  Google Scholar 

  33. Barnhart GR, Jones M, Ishihara T, Chavez AM, Rose DM, Ferrans VJ (1982) Bioprosthetic valvular failure. Clinical and pathological observations in an experimental animal model. J Thorac Cardiovasc Surg 83:618–631

    CAS  PubMed  Google Scholar 

  34. Sands MP, Rittenhouse EA, Mohri H, Merendino KA (1969) An anatomical comparison of human pig, calf, and sheep aortic valves. Ann Thorac Surg 8:407–414

    Article  CAS  PubMed  Google Scholar 

  35. Salerno CT, Droel J, Bianco RW (1998) Current state of in vivo preclinical heart valve evaluation. J Heart Valve Dis 7:158–162

    CAS  PubMed  Google Scholar 

  36. Yu WC, Chen SA, Lee SH et al (1998) Tachycardia-induced change of atrial refractory period in humans: rate dependency and effects of antiarrhythmic drugs. Circulation 97:2331–2337

    Article  CAS  PubMed  Google Scholar 

  37. Au-Yeung K, Johnson CR, Wolf PD (2004) A novel implantable cardiac telemetry system for studying atrial fibrillation. Physiol Meas 25:1223–1238

    Article  PubMed  Google Scholar 

  38. Sharifov OF, Fedorov VV, Beloshapko GG, Glukhov AV, Yushmanova AV, Rosenshtraukh LV (2004) Roles of adrenergic and cholinergic stimulation in spontaneous atrial fibrillation in dogs. J Am Coll Cardiol 43:483–490

    Article  CAS  PubMed  Google Scholar 

  39. Brugada R, Roberts R (1999) Molecular biology and atrial fibrillation. Curr Opin Cardiol 14:269–273

    Article  CAS  PubMed  Google Scholar 

  40. Rivard AL, Suwan PT, Imaninaini K, Gallegos RP, Bianco RW (2007) Development of a sheep model of atrial fibrillation for preclinical prosthetic valve testing. J Heart Valve Dis 16:314–323

    PubMed  Google Scholar 

  41. Gallegos RP, Wang X, Clarkson C, Jerosch-Herold M, Bolman RM (2003) Serum troponin level predicts infarct size. In: American Heart Association. American Heart Association, San Antonio

    Google Scholar 

  42. Verdouw PD, van den Doel MA, de Zeeuw S, Duncker DJ (1998) Animal models in the study of myocardial ischaemia and ischaemic syndromes. Cardiovasc Res 39:121–135

    Article  CAS  PubMed  Google Scholar 

  43. McFalls EO, Baldwin D, Palmer B, Marx D, Jaimes D, Ward HB (1997) Regional glucose uptake within hypoperfused swine myocardium as measured by positron emission tomography. Am J Physiol 272:H343–H349

    CAS  PubMed  Google Scholar 

  44. Headrick JP, Emerson CS, Berr SS, Berne RM, Matherne GP (1996) Interstitial adenosine and cellular metabolism during beta-adrenergic stimulation of the in situ rabbit heart. Cardiovasc Res 31:699–710

    CAS  PubMed  Google Scholar 

  45. Massie BM, Schwartz GG, Garcia J, Wisneski JA, Weiner MW, Owens T (1994) Myocardial metabolism during increased work states in the porcine left ventricle in vivo. Circ Res 74:64–73

    Article  CAS  PubMed  Google Scholar 

  46. Lie JT, Holley KE, Kampa WR, Titus JL (1971) New histochemical method for morphologic diagnosis of early stages of myocardial ischemia. Mayo Clin Proc 46:319–327

    CAS  PubMed  Google Scholar 

  47. Zaragoza C, Gomez-Guerrero C, Martin-Ventura JL et al (2011) Animal models of cardiovascular diseases. J Biomed Biotechnol 2011:497841

    Article  PubMed Central  PubMed  Google Scholar 

  48. Winkler B, Binz K, Schaper W (1984) Myocardial blood flow and infarction in rats, guinea pigs, and rabbits. J Mol Cell Cardiol 16:48

    Article  Google Scholar 

  49. Kirklin JK, Young JB, McGiffin D (eds) (2002) Heart transplantation. Churchill Livingstone, New York, p 883

    Google Scholar 

  50. Wicomb W, Cooper DK, Hassoulas J, Rose AG, Barnard CN (1982) Orthotopic transplantation of the baboon heart after 20 to 24 hours’ preservation by continuous hypothermic perfusion with an oxygenated hyperosmolar solution. J Thorac Cardiovasc Surg 83:133–140

    CAS  PubMed  Google Scholar 

  51. Tsutsumi H, Oshima K, Mohara J et al (2001) Cardiac transplantation following a 24-h preservation using a perfusion apparatus. J Surg Res 96:260–267

    Article  CAS  PubMed  Google Scholar 

  52. Fischel RJ, Matas AJ, Platt JL et al (1992) Cardiac xenografting in the pig-to-rhesus monkey model: manipulation of antiendothelial antibody prolongs survival. J Heart Lung Transplant 11:965–973, discussion 973–974

    CAS  PubMed  Google Scholar 

  53. Hunt SA, Haddad F (2008) The changing face of heart transplantation. J Am Coll Cardiol 52:587–598

    Article  PubMed  Google Scholar 

  54. Newcomb AE, Esmore DS, Rosenfeldt FL, Richardson M, Marasco SF (2004) Heterotopic heart transplantation: an expanding role in the twenty-first century? Ann Thorac Surg 78:1345–1350, discussion 1350–1351

    Article  PubMed  Google Scholar 

  55. Langman LJ, Nakakura H, Thliveris JA, LeGatt DF, Yatscoff RW (1997) Pharmacodynamic monitoring of mycophenolic acid in rabbit heterotopic heart transplant model. Ther Drug Monit 19:146–152

    Article  CAS  PubMed  Google Scholar 

  56. Beschorner WE, Sudan DL, Radio SJ et al (2003) Heart xenograft survival with chimeric pig donors and modest immune suppression. Ann Surg 237:265–272

    PubMed Central  PubMed  Google Scholar 

  57. Perrault LP, Bidouard JP, Desjardins N, Villeneuve N, Vilaine JP, Vanhoutte PM (2002) Comparison of coronary endothelial dysfunction in the working and nonworking graft in porcine heterotopic heart transplantation. Transplantation 74:764–772

    Article  CAS  PubMed  Google Scholar 

  58. Ono K, Lindsey ES (1969) Improved technique of heart transplantation in rats. J Thorac Cardiovasc Surg 57:225–229

    CAS  PubMed  Google Scholar 

  59. Swindle MM, Horneffer PJ, Gardner TJ et al (1986) Anatomic and anesthetic considerations in experimental cardiopulmonary surgery in swine. Lab Anim Sci 36:357–361

    CAS  PubMed  Google Scholar 

  60. Kozlowski T, Shimizu A, Lambrigts D et al (1999) Porcine kidney and heart transplantation in baboons undergoing a tolerance induction regimen and antibody adsorption. Transplantation 67:18–30

    Article  CAS  PubMed  Google Scholar 

  61. Goddard MJ, Dunning J, Horsley J, Atkinson C, Pino-Chavez G, Wallwork J (2002) Histopathology of cardiac xenograft rejection in the pig-to-baboon model. J Heart Lung Transplant 21:474–484

    Article  PubMed  Google Scholar 

  62. DeBault L, Ye Y, Rolf LL et al (1992) Ultrastructural features in hyperacutely rejected baboon cardiac allografts and pig cardiac xenografts. Transplant Proc 24:612–613

    CAS  PubMed  Google Scholar 

  63. Brenner P, Schmoeckel M, Reichenspurner H et al (2000) Technique of immunoapheresis in heterotopic and orthotopic xenotransplantation of pig hearts into cynomolgus and rhesus monkeys. Transplant Proc 32:1087–1088

    Article  CAS  PubMed  Google Scholar 

  64. Kurlansky PA, Sadeghi AM, Michler RE et al (1987) Comparable survival of intra-species and cross-species primate cardiac transplants. Transplant Proc 19:1067–1071

    CAS  PubMed  Google Scholar 

  65. Lambrigts D, Sachs DH, Cooper DK (1998) Discordant organ xenotransplantation in primates: world experience and current status. Transplantation 66:547–561

    Article  CAS  PubMed  Google Scholar 

  66. Wiener AS, Socha WW, Moor-Jankowski J (1974) Homologous of the human A-B-O blood groups in apes and monkeys. Haematologia (Budap) 8:195–216

    CAS  Google Scholar 

  67. Kroshus TJ, Rollins SA, Dalmasso AP et al (1995) Complement inhibition with an anti-C5 monoclonal antibody prevents acute cardiac tissue injury in an ex vivo model of pig-to-human xenotransplantation. Transplantation 60:1194–1202

    Article  CAS  PubMed  Google Scholar 

  68. Salerno CT, Kulick DM, Yeh CG et al (2002) A soluble chimeric inhibitor of C3 and C5 convertases, complement activation blocker-2, prolongs graft survival in pig-to-rhesus monkey heart transplantation. Xenotransplantation 9:125–134

    Article  PubMed  Google Scholar 

  69. Cramer DV, Podesta L, Makowka L (eds) (1994) Handbook of animal models in transplantation research. CRC, Boca Raton, p 352

    Google Scholar 

  70. Li X, Bai J, He P (2002) Simulation study of the Hemopump as a cardiac assist device. Med Biol Eng Comput 40:344–353

    Article  CAS  PubMed  Google Scholar 

  71. Snyder TA, Watach MJ, Litwak KN, Wagner WR (2002) Platelet activation, aggregation, and life span in calves implanted with axial flow ventricular assist devices. Ann Thorac Surg 73:1933–1938

    Article  PubMed  Google Scholar 

  72. Mussivand T, Fujimoto L, Butler K et al (1989) In vitro and in vivo performance evaluation of a totally implantable electrohydraulic left ventricular assist system. ASAIO Trans 35:433–435

    Article  CAS  PubMed  Google Scholar 

  73. King JM, Dodd DC, Roth L (eds) (2006) The necropsy book, 5th edn. Cornell University, New York

    Google Scholar 

  74. Reffelmann T, Leor J, Muller-Ehmsen J, Kedes L, Kloner RA (2003) Cardiomyocyte transplantation into the failing heart-new therapeutic approach for heart failure? Heart Fail Rev 8:201–211

    Google Scholar 

  75. Reffelmann T, Kloner RA (2003) Cellular cardiomyoplasty–cardiomyocytes, skeletal myoblasts, or stem cells for regenerating myocardium and treatment of heart failure? Cardiovasc Res 58:358–368

    Article  CAS  PubMed  Google Scholar 

  76. Reffelmann T, Dow JS, Dai W, Hale SL, Simkhovich BZ, Kloner RA (2003) Transplantation of neonatal cardiomyocytes after permanent coronary artery occlusion increases regional blood flow of infarcted myocardium. J Mol Cell Cardiol 35:607–613

    Article  CAS  PubMed  Google Scholar 

  77. Sakai T, Ling Y, Payne TR, Huard J (2002) The use of ex vivo gene transfer based on muscle-derived stem cells for cardiovascular medicine. Trends Cardiovasc Med 12:115–120

    Article  CAS  PubMed  Google Scholar 

  78. Hill JM, Dick AJ, Raman VK et al (2003) Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108:1009–1014

    Article  PubMed Central  PubMed  Google Scholar 

  79. Kraitchman DL, Heldman AW, Atalar E et al (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293

    Article  PubMed  Google Scholar 

  80. Kraitchman DL, Sampath S, Castillo E et al (2003) Quantitative ischemia detection during cardiac magnetic resonance stress testing by use of FastHARP. Circulation 107:2025–2030

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Bianco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Robinson, N., Souslian, L., Gallegos, R.P., Rivard, A.L., Dalmasso, A.P., Bianco, R.W. (2015). Animal Models for Cardiac Research. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-19464-6_27

Download citation

Publish with us

Policies and ethics