Skip to main content

Introduction to Echocardiography

  • Chapter
  • 129k Accesses

Abstract

Advances in ultrasound technology in the last 30 years have allowed transthoracic echocardiography to become the primary technique for noninvasive assessment of cardiac structure and function in patients with congenital and acquired heart disease. Advanced ultrasound techniques, including transesophageal echocardiography and intravascular ultrasound, are widely used and can refine imaging and improve outcomes during invasive cardiac procedures. Better resolution and advanced Doppler techniques have allowed more accurate diagnoses and improved monitoring of pathologic conditions, and provide tools to study embryonic and fetal cardiac development. Finally, ultrasound technologies play an important role in cardiovascular research as well and are currently applied to research in physiology, molecular biology, vascular and cardiac regeneration, and stem cell therapies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Geva T (1998) Echocardiography and Doppler ultrasound. In: Garson A Jr (ed) The science and practice of pediatric cardiology. Williams and Wilkins, Philadelphia, pp 789–843

    Google Scholar 

  2. Vermilion RP (1997) Basic physical principles. In: Snider R (ed) Echocardiography in pediatric heart disease. Mosby-Year Book, St. Louis, pp 1–10

    Google Scholar 

  3. Snider R, Serwer G, Ritter S (eds) (1997) Echocardiography in pediatric heart disease. Mosby-Year Book, St. Louis

    Google Scholar 

  4. Colan SD, Parness IA, Spevak PJ (1992) Developmental modulation of myocardial mechanics: age and growth related alterations in afterload and contractility. J Am Coll Cardiol 19:619–629

    Article  CAS  PubMed  Google Scholar 

  5. Gutgessel HP, Paquet M, Duff DF, McNamara DG (1977) Evaluation of left ventricular size and function by echocardiography: results in normal children. Circulation 56:457–462

    Article  Google Scholar 

  6. Vermilion RP (1997) Technology and instrumentation. In: Snider R (ed) Echocardiography in pediatric heart disease. Mosby-Year Book, St. Louis, pp 11–21

    Google Scholar 

  7. Danford DA, Murphy DJ Jr (1998) Basic foundations of echocardiography and Doppler ultrasound. In: Garson A Jr (ed) The science and practice of pediatric cardiology. Williams and Wilkins, Philadelphia, pp 539–558

    Google Scholar 

  8. Pellet AA, Tolar WG, Merwin DG, Kerut EK (2004) The Tei index: methodology and disease state values. Echocardiography 21:669–672

    Article  Google Scholar 

  9. Knebel F, Reibis RK, Bondke HJ et al (2004) Tissue Doppler echocardiography and biventricular pacing in heart failure: patient selection, procedural guidance, follow-up, quantification of success. Cardiovasc Ultrasound 2:17

    Article  PubMed  PubMed Central  Google Scholar 

  10. Allan L (2000) The normal fetal heart. In: Allan L (ed) Textbook of fetal cardiology. Greenwich Medical Media Limited, London, pp 55–91

    Google Scholar 

  11. Freud LR, McElhinney DB, Marshall AC et al (2014) Fetal aortic valvuloplasty for evolving hypoplastic left heart syndrome: postnatal outcomes of the first 100 patients. Circulation 130:638–645

    Article  PubMed  PubMed Central  Google Scholar 

  12. Allan LD (2012) Rationale for and current status of prenatal cardiac intervention. Early Hum Dev 88:287–290

    Article  PubMed  Google Scholar 

  13. Randolph GR, Hagler DJ, Connolly HM et al (2002) Intraoperative transesophageal echocardiography during surgery for congenital heart defects. J Thorac Cardiovasc Surg 124:1176–1182

    Article  PubMed  Google Scholar 

  14. Stevenson JG (1999) Incidence of complications in pediatric transesophageal echocardiography: experience in 1650 cases. J Am Soc Echocardiogr 12:527–532

    Article  CAS  PubMed  Google Scholar 

  15. Rousou JA, Tighe DA, Garb JL et al (2000) Risk of dysphagia after transesophageal echocardiography during cardiac operations. Ann Thorac Surg 69:486–489

    Article  CAS  PubMed  Google Scholar 

  16. Ziada KM, Tuzcu EM, Nissen SE (1999) Application of intravascular ultrasound imaging in understanding and guiding percutaneous therapy for atherosclerotic coronary disease. Cardiol Rev 7:289–300

    Article  CAS  PubMed  Google Scholar 

  17. McDaniel MC, Eshtehardi P, Sawaya FJ et al (2011) Contemporary clinical applications of coronary intravascular ultrasound. JACC Cardiovasc Interv 4:115511–115567

    Google Scholar 

  18. Costello JM, Wax D, Binns HJ et al (2003) A comparison of intravascular ultrasound with coronary angiography for evaluation of transplant coronary artery disease in pediatric heart transplant recipients. J Heart Lung Transplant 22:44–49

    Article  PubMed  Google Scholar 

  19. Witzenbichler B, Maehara A, Weisz G et al (2014) Relationship between intravascular ultrasound and clinical outcomes after drug-eluting stents: the assessment of dual-antiplatelet therapy with drug-eluting stents (ADAPT-DES) study. Circulation 129:463–470

    Article  CAS  PubMed  Google Scholar 

  20. Srinivasan S, Baldwin HS, Aristizabal O, Kwee L, Labow M, Turnbull DH (1998) Noninvasive, in utero imaging of mouse embryonic heart development with 40-MHz echocardiography. Circulation 98:912–918

    Article  CAS  PubMed  Google Scholar 

  21. Zhou YQ, Foster FS, Qu DW, Zhang M, Harasiewic KA, Adamson SL (2002) Applications for multifrequency ultrasound biomicroscopy in mice from implantation to adulthood. Physiol Genomics 10:113–126

    Article  CAS  PubMed  Google Scholar 

  22. Insight through In Vivo Imaging, Vevo 660 System Product Information, Visualsonics (Canada). www.visualsonics.com. Accessed 21 Nov 2014

  23. Bartlett HL, Escalera RB 2nd, Patel SS et al (2010) Echocardiographic assessment of cardiac morphology and function in Xenopus. Comp Med 60:107–113

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Porello ER, Mahmoud AI, Simpson E et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331:1078–1080

    Article  Google Scholar 

  25. Silva GV, Litovsky S, Assad JAR et al (2005) Mesenchymal stem cells differentiated into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 111:150–156

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Jim Berry, Kim Berry, and Jay Hall for providing the images shown in this chapter and Kim Berry and Jay Hall for the review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie L. Lohr MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lohr, J.L., Sivanandam, S. (2015). Introduction to Echocardiography. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-19464-6_22

Download citation

Publish with us

Policies and ethics