Skip to main content

Fueling Normal and Diseased Hearts: Myocardial Bioenergetics

  • Chapter
Handbook of Cardiac Anatomy, Physiology, and Devices

Abstract

Cardiac contractile performance depends upon: (1) the delivery of carbon substrates and oxygen present in the blood to the cardiac extracellular space (via the coronary circulation), (2) the ability of the cardiomyocytes to efficiently extract these substrates from the extracellular space, and (3) the pathways via which the chemical energy stored within the carbon substrates is transferred to adenosine triphosphate (ATP), an energy storage molecule that can be directly utilized by most chemical energy driven processes. Importantly, ATP synthetic capacity must be sufficient to support a wide range of energy demands with high rates of ATP generation and must not be associated with destabilization of cytosolic and intra-organelle chemical milieus. The latter characteristic is crucial if the performance of the contractile apparatus and intracellular organelles is to remain optimal over the broad range of cardiac work states required by a physically active organism. Hence, even a high rate of myocardial energy expenditure must not induce the fatigue that is known to develop in heavily working skeletal muscle. This chapter describes the ways in which the chemical energy stored in ingested carbon substrates (glucose, fatty acids, and, to a modest extent, proteins) is transferred to ATP and reviews some of the regulatory systems which integrate the function of these pathways and make them responsive to changes in ATP demand without destabilizing the intracellular chemical milieu. The generation of toxic by-products of the metabolic processes and mechanisms that limit their adverse effects are also reviewed. Last of all, the effects of several physiological states and diseases on these processes are briefly discussed, and the concept that the diseased heart may be energy limited is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADP:

Adenosine diphosphate

AMP:

Adenosine monophosphate

AMPK:

Adenosine monophosphate-activated kinase

ATP:

Adenosine triphosphate

FADH2 :

Flavin adenine dinucleotide

LDH:

Lactic acid dehydrogenase

NADH:

Nicotinamide adenine dinucleotide

NEFA:

Nonesterified free fatty acids

PDH:

Pyruvate dehydrogenase

ROS:

Reactive oxygen species

TCA:

Tricarboxylic acid

VLCAD:

Very long-chain acyl-CoA dehydrogenase

References

References for Regulation of Myocardial Blood Flow

  1. Ishibashi Y, Duncker DJ, Zhang J, Bache RJ (1998) ATP-sensitive K+ channels, adenosine, and nitric oxide-mediated mechanisms account for coronary vasodilation during exercise. Circ Res 82:346–359

    Article  CAS  PubMed  Google Scholar 

  2. Gorman MW, Tune JD, Richmond KN, Feigl EO (2000) Feedforward sympathetic coronary vasodilation in exercising dogs. J Appl Physiol 89:1892–1902

    CAS  PubMed  Google Scholar 

  3. Duncker DJ, Bache RJ (2000) Regulation of coronary vasomotor tone under normal conditions and during acute myocardial hypoperfusion. Pharmacol Ther 86:87–110

    Article  CAS  PubMed  Google Scholar 

  4. Duncker DJ, Bache RJ (2008) Regulation of coronary blood flow during exercise. Physiol Rev 88:1009–1086

    Article  CAS  PubMed  Google Scholar 

General Biochemistry Text

  1. Berg JM, Tymoczko JL, Stryer L (eds) (2010) Biochemistry, 7th edn. W.H. Freeman & Co., New York

    Google Scholar 

References for Glucose and Fatty Acid Metabolism and Regulation of Glycolysis and Fatty Acid Metabolism

  1. Coven DL, Hu X, Cong L et al (2003) Physiological role of AMP-activated protein kinase in the heart: graded activation during exercise. Am J Physiol Endocrinol Metab 285:E629–E636

    Article  CAS  PubMed  Google Scholar 

  2. Nickerson JG, Momken I, Benton CR et al (2007) Protein-mediated fatty acid uptake: regulation by contraction, AMP-activated protein kinase, and endocrine signals. Appl Physiol Nutr Metab 32:865–873

    Article  CAS  PubMed  Google Scholar 

  3. Roden M (2004) How free fatty acids inhibit glucose utilization in human skeletal muscle. News Physiol Sci 19:92–96

    CAS  PubMed  Google Scholar 

  4. Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129

    Article  CAS  PubMed  Google Scholar 

References for Myocardial Substrate Selection

  1. Lehman JJ, Kelly DP (2002) Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin Exp Pharmacol Physiol 29:339–345

    Article  CAS  PubMed  Google Scholar 

  2. Drake AJ, Haines JR, Noble M (1980) Preferential uptake of lactate by the normal myocardium in dogs. Cardiovasc Res 14:65–72

    Article  CAS  PubMed  Google Scholar 

  3. Drake-Holland AJ, Van der Vusse GJ, Roemen TH et al (2001) Chronic catecholamine depletion switches myocardium from carbohydrate to lipid utilisation. Cardiovasc Drugs Ther 15:111–117

    Article  CAS  PubMed  Google Scholar 

  4. Hardie DG, Ashford ML (2014) AMPK: regulating energy balance at the cellular and whole body levels. Physiology (Bethesda) 29:99–107

    CAS  Google Scholar 

References for the TCA Cycle, Electron Transport Chain, and Oxidative Phosphorylation and Their Regulation

  1. From AH, Zimmer SD, Michurski SP et al (1990) Regulation of the oxidative phosphorylation rate in the intact cell. Biochemistry 29:3731–3743

    Article  CAS  PubMed  Google Scholar 

  2. Ludwig B, Bender E, Arnold S, Huttemann M, Lee I, Kadenbach B (2001) Cytochrome C oxidase and the regulation of oxidative phosphorylation. Chembiochem 2:392–403

    Article  CAS  PubMed  Google Scholar 

  3. Brand MD, Curtis RK (2002) Simplifying metabolic complexity. Biochem Soc Trans 30:25–30

    Article  CAS  PubMed  Google Scholar 

  4. Kushmerick MJ, Conley KE (2002) Energetics of muscle contraction: the whole is less than the sum of its parts. Biochem Soc Trans 30:227–231

    Article  CAS  PubMed  Google Scholar 

  5. Zhang J, Murakami Y, Zhang Y et al (1999) Oxygen delivery does not limit cardiac performance during high work states. Am J Physiol 277:H50–H57

    CAS  PubMed  Google Scholar 

  6. Territo PR, Mootha VK, French SA, Balaban RS (2000) Ca(2+) activation of heart mitochondrial oxidative phosphorylation: role of the F(0)/F(1)-ATPase. Am J Physiol Cell Physiol 278:C423–C435

    CAS  PubMed  Google Scholar 

  7. Hochachka PW (2003) Intracellular convection, homeostasis and metabolic regulation. J Exp Biol 206:2001–2009

    Article  CAS  PubMed  Google Scholar 

  8. Das AM (2003) Regulation of the mitochondrial ATP-synthase in health and disease. Mol Genet Metab 79:71–82

    Article  CAS  PubMed  Google Scholar 

  9. Levy C, Ter Keurs HE, Yaniv Y, Landesberg A (2005) The sarcomeric control of energy conversion. Ann N Y Acad Sci 1047:219–231

    Article  CAS  PubMed  Google Scholar 

  10. Maack C, O’Rourke B (2007) Excitation-contraction coupling and mitochondrial energetics. Basic Res Cardiol 102:369–392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Glancy B, Balaban RS (2012) Role of mitochondrial Ca2+ in the regulation of cellular energetics. Biochemistry 51:2959–2973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Genova ML, Lenaz G (2014) Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta 1837:427–443

    Article  CAS  PubMed  Google Scholar 

  13. Guzun R, Kaambre T, Bagur R et al (2014) Modular organization of cardiac energy metabolism: energy conversion, transfer and feedback regulation. Acta Physiol (Oxf). doi: 10.1111/apha.12287 [Epub ahead of print]

References for Toxic Metabolic By-products; Reactive Species

  1. Powers SK, Ji LL, Kavazis AN, Jackson MJ (2010) Reactive oxygen species: impact on skeletal muscle. Compr Physiol 1:941–969

    Google Scholar 

  2. Radak Z, Zhao Z, Koltai E, Ohno H, Atalay M (2013) Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxid Redox Signal 18:1–37

    Article  Google Scholar 

  3. Ward CW, Prosser BL, Lederer WJ (2014) Mechanical stretch-induced activation of ROS/RNS signaling in striated muscle. Antioxid Redox Signal 20:929–935

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Böhm M, O’Rourke B, Maack C (2010) Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121:1606–1613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Reily C, Mitchell T, Chacko BK, Benavides G, Murphy MP, Darley-Usmar V (2013) Mitochondrially targeted compounds and their impact on cellular bioenergetics. Redox Biol 1:86–93

    Article  CAS  PubMed Central  PubMed  Google Scholar 

References for Modeling of Energetic Function

  1. Cortassa S, Aon MA, O’Rourke B et al (2006) A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. Biophys J 91:1564–1589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Saks VA, Kuznetsov AV, Vendelin M, Guerrero K, Kay L, Seppet EK (2004) Functional coupling as a basic mechanism of feedback regulation of cardiac energy metabolism. Mol Cell Biochem 256–257:185–199

    Article  PubMed  Google Scholar 

  3. Saks V, Dzeja P, Schlattner U, Vendelin M, Terzic A, Wallimann T (2006) Cardiac system bioenergetics: metabolic basis of the Frank-Starling law. J Physiol 571:253–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Korzeniewski B (2002) Parallel activation in the ATP supply–demand system lessens the impact of inborn enzyme deficiencies, inhibitors, poisons or substrate shortage on oxidative phosphorylation in vivo. Biophys Chem 96:21–31

    Article  CAS  PubMed  Google Scholar 

  5. Korzeniewski B (2001) Theoretical studies on the regulation of oxidative phosphorylation in intact tissues. Biochem Biophys Acta 1504:31–45

    CAS  PubMed  Google Scholar 

  6. Aimar-Beurton M, Korzeniewski B, Letellier T, Ludinard S, Mazat JP, Nazaret C (2002) Virtual mitochondria: metabolic modelling and control. Mol Biol Rep 29:227–232

    Article  CAS  PubMed  Google Scholar 

Reference for High-Energy Phosphate Shuttles

  1. Dzeja PP, Terzic A (2003) Phosphotransfer networks and cellular energetics. J Exp Biol 206:2039–2047

    Article  CAS  PubMed  Google Scholar 

References for Metabolism During Ischemia

  1. Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129

    Article  CAS  PubMed  Google Scholar 

  2. Sambandam N, Lopaschuk GD (2003) AMP-activated protein kinase (AMPK) control of fatty acid and glucose metabolism in the ischemic heart. Prog Lipid Res 42:238–256

    Article  CAS  PubMed  Google Scholar 

References for Metabolism in Hypertrophied and Failing Myocardium

  1. Ning XH, Zhang J, Liu J et al (2000) Signaling and expression for mitochondrial membrane proteins during left ventricular remodeling and contractile failure after myocardial infarction. J Am Coll Cardiol 36:282–287

    Article  CAS  PubMed  Google Scholar 

  2. Lehman JJ, Kelly DP (2002) Transcriptional activation of energy metabolic switches in the developing and hypertrophied heart. Clin Exp Pharmacol Physiol 29:339–345

    Article  CAS  PubMed  Google Scholar 

  3. Young ME, Laws FA, Goodwin GW, Taegtmeyer H (2001) Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J Biol Chem 276:44390–44395

    Article  CAS  PubMed  Google Scholar 

  4. Liao R, Jain M, Cui L et al (2002) Cardiac-specific overexpression of GLUT1 prevents the development of heart failure attributable to pressure overload in mice. Circulation 106:2125–2131

    Article  CAS  PubMed  Google Scholar 

  5. Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129

    Article  CAS  PubMed  Google Scholar 

  6. Ashrafian H, Frenneaux MP, Opie LH (2007) Metabolic mechanisms in heart failure. Circulation 116:434–448

    Article  CAS  PubMed  Google Scholar 

  7. Gauthier LD, Greenstein JL, O’Rourke B, Winslow RL (2013) An integrated mitochondrial ROS production and scavenging model: implications for heart failure. Biophys J 105:2832–2842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Maack C, Cortassa S, Aon MA, Ganesan AN, Liu T, O’Rourke B (2006) Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes. Circ Res 99:172–182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Kohlhaas M, Liu T, Knopp A, Zeller T, Ong MF, Böhm M, O’Rourke B, Maack C (2010) Elevated cytosolic Na+ increases mitochondrial formation of reactive oxygen species in failing cardiac myocytes. Circulation 121:1606–1613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

References for Inherited Defects in Myocardial Metabolism

  1. Mochel F, DeLonlay P, Touati G et al (2005) Pyruvate carboxylase deficiency: clinical and biochemical response to anaplerotic diet therapy. Mol Genet Metab 84:305–312

    Article  CAS  PubMed  Google Scholar 

  2. Roe CR, Mochel F (2006) Anaplerotic diet therapy in inherited metabolic disease: therapeutic potential. J Inherit Metab Dis 29:332–340

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Supported by NIH (NIBIB) P41 EB015894

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur H. L. From MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

From, A.H.L., Bache, R.J. (2015). Fueling Normal and Diseased Hearts: Myocardial Bioenergetics. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-19464-6_21

Download citation

Publish with us

Policies and ethics