Skip to main content

Cardiac and Vascular Receptors and Signal Transduction

  • Chapter
  • 129k Accesses

Abstract

Cellular physiological functions are regulated via signaling mechanisms in essentially any cell type of any organ within the human body. While myocardial cells are unique in that they are interconnected to each other via gap junctions and thus act as an electrical syncytium, a vast number of important cellular receptors and signal transduction pathways allow individual cells to receive and respond to various signals. These receptors and signal transduction pathways play important roles in normal cell/organ functions (their physiology), as well as in disease processes (pathophysiology). It is the aim of this chapter to review the major role and signaling mechanisms of selected physiologically and pathophysiologically important cardiac and vascular receptors, with emphasis on G protein-coupled receptors (e.g., beta-adrenergic receptors) and non-G protein-coupled receptor systems, such as guanylyl cyclase-related receptors (e.g., receptors for nitric oxide). Finally, we will discuss the importance and complexity of inflammation in the pathobiology of coronary artery disease and its treatment. Inflammation plays a very important role in cardiovascular disease. For example, device-based interventions such as coronary stenting may activate inflammation via a series of complex signaling processes. Importantly, inflammation pathways also play a central role in the elicitation of atherosclerosis, myocardial infarction, and/or heart failure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AC:

Adenylyl cyclase

ATP:

Adenosine triphosphate

β-AR:

Beta-adrenergic receptor

β-ARK:

Beta-adrenergic receptor kinase

cAMP:

Cyclic adenosine monophosphate

CDK:

Cyclin-dependent kinase

cGMP:

Cyclic guanosine monophosphate

DES:

Drug-eluting stent

ERK:

Extracellular signal-regulated kinase

GC:

Guanylyl cyclase

GDP:

Guanosine diphosphate

GTP:

Guanosine triphosphate

IRAK:

Interleukin-1 receptor-associated kinase

ISR:

In-stent restenosis

JNK:

JUN N-terminal kinase

MAPK:

Mitogen-activated protein kinase

MCP:

Monocyte chemoattractant protein

M-CSF:

Macrophage colony-stimulating factor

NO:

Nitric oxide

NOS:

Nitric oxide synthase

pRB:

Retinoblastoma gene product

PTCA:

Percutaneous transluminal coronary angioplasty

SMC:

Smooth muscle cell

TIR:

Toll/interleukin-1 receptor

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

TNFR:

Tumor necrosis factor receptor

TRAF:

TNFR-associated factor

References

  1. Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415:206–212

    CAS  PubMed  Google Scholar 

  2. del Monte F, Kaufmann AJ, Poole-Wilson PA et al (1993) Coexistence of functioning beta-1 and beta-2 adrenoreceptors in single myocytes from human ventricle. Circulation 88:854–863

    PubMed  Google Scholar 

  3. Bristow MR, Hershberger RE, Port JD et al (1990) Beta-adrenergic pathways in non-failing and failing human ventricular myocardium. Circulation 82:112–125

    Google Scholar 

  4. Opie L (1998) Receptors and signal transduction. In: Opie L (ed) The heart: physiology, from cell to circulation, 3rd edn. Lippincott Williams & Wilkins, Philadelphia, pp 173–207

    Google Scholar 

  5. Hohl CM, Li Q (1991) Compartmentation of camp in adult canine ventricular myocytes. Relation to single cell free calcium transients. Circ Res 69:1369–1379

    CAS  PubMed  Google Scholar 

  6. Lader AS, Xiao YF, Ishikawa Y et al (1998) Cardiac gsalpha overexpression enhances L-type calcium channels through an adenylyl cyclase independent pathway. Proc Natl Acad Sci U S A 95:9669–9674

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Port JD, Bristow MR (2001) Altered beta-adrenergic receptor gene regulation and signaling in chronic heart failure. J Mol Cell Cardiol 33:887–905

    CAS  PubMed  Google Scholar 

  8. Gauthier C, Langin D, Balligand JL (2000) Beta3-adrenoceptors in the cardiovascular system. Trends Pharmacol Sci 21:426–431

    CAS  PubMed  Google Scholar 

  9. Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG (2000) The interaction of beta-arrestin with the AP-2 adaptor is required for the clustering of beta-2 adrenergic receptor into clathrin coated pits. J Biol Chem 275:23120–23126

    CAS  PubMed  Google Scholar 

  10. Luttrell LM, Ferguson SS, Daakay Y et al (1999) Beta-arrestin-dependent formation of beta-2 adrenergic receptor-Src protein kinase complexes. Science 283:655–661

    CAS  PubMed  Google Scholar 

  11. Shenoy SK, McDonald PH, Kohout TA, Lefkowitz RJ (2001) Regulation of receptor fate by ubiquitination of activated beta-2 adrenergic receptor and beta-arrestin. Science 294:1574–1577

    Google Scholar 

  12. Mann D, Kent R, Parsons B, Cooper IVG (1992) Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 85:790–804

    CAS  PubMed  Google Scholar 

  13. Bristow MR, Ginsburg R, Umans V et al (1986) Beta 1 and beta 2-adrenergic receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res 59:297–309

    CAS  PubMed  Google Scholar 

  14. Ungerer M, Parruti G, Böhn M et al (1994) Expression of beta-arrestins and beta-adrenergic receptor kinases in the failing human heart. Circ Res 74:206–213

    CAS  PubMed  Google Scholar 

  15. Steinberg SF (1999) The molecular basis for distinct beta-AR subtype action in cardiomyocytes. Circ Res 85:1101–1111

    CAS  PubMed  Google Scholar 

  16. Communal C, Singh K, Sawyer DB, Colucci WS (1999) Opposing effects of beta-1 and beta-2 adrenergic receptor on cardiac myocyte apoptosis: role of a pertussis toxin sensitive G protein. Circulation 100:2210–2212

    CAS  PubMed  Google Scholar 

  17. Zaugg M, Xu W, Lucchinetti E, Shafiq SA, Jamali NZ, Siddiqui MA (2000) Beta-adrenergic receptor subtypes differentially affect apoptosis in adult rat ventricular myocytes. Circulation 102:344–350

    CAS  PubMed  Google Scholar 

  18. Bisognano JD, Weinberger HD, Bohlmeyer TJ et al (2000) Myocardial-directed overexpression of the human beta-1-adrenergic receptor in transgenic mice. J Mol Cell Cardiol 32:817–830

    CAS  PubMed  Google Scholar 

  19. Saito S, Hiroi Y, Zou Y et al (2000) Beta-adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. J Biol Chem 275:34528–34533

    CAS  PubMed  Google Scholar 

  20. Lowes BD, Gill EA, Abraham WT et al (1999) Effects of carvedilol on left ventricular mass, chamber geometry, and mitral regurgitation in chronic heart failure. Am J Cardiol 83:1201–1205

    CAS  PubMed  Google Scholar 

  21. Liggett SB, Wagoner LE, Craft LL et al (1998) The Ile164 Beta-2 AR polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest 102:1534–1539

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Wagoner LE, Craft LL, Singh B et al (2000) Polymorphisms of the beta-2 AR determine exercise capacity in patients with heart failure. Circ Res 86:834–840

    CAS  PubMed  Google Scholar 

  23. Graham RM, Perez DM, Hwa J, Piascik MT (1996) Alpha-AR subtypes. Molecular structure, function and signaling. Circ Res 78:737–749

    CAS  PubMed  Google Scholar 

  24. Otani H, Otani H, Das DK (1988) Alpha-1 adrenoceptor mediated phosphoinositide breakdown and inotropic response in rate left ventricular papillary muscles. Circ Res 62:8–17

    CAS  PubMed  Google Scholar 

  25. Hwang KC, Grady CD, Sweet WE, Moravec CS (1996) Alpha-1 adrenergic receptor coupling with Gh in the failing human heart. Circulation 94:718–726

    CAS  PubMed  Google Scholar 

  26. Choi DJ, Koch WJ, Hunter JJ, Rockman HA (1997) Mechanism of beta-adrenergic receptor desensitization in cardiac hypertrophy is increased beta-ARK. J Biol Chem 272:17223–17229

    CAS  PubMed  Google Scholar 

  27. Knowlton KU, Michael MC, Itani M et al (1993) The alpha1A-adrenergic receptor subtype mediates biochemical, molecular, and morphologic features of cultured myocardial cell hypertrophy. J Biol Chem 268:15374–15380

    CAS  PubMed  Google Scholar 

  28. Sugden PH (1999) Signaling in myocardial hypertrophy: life after calcineurin? Circ Res 84:633–646

    CAS  PubMed  Google Scholar 

  29. Barki-Harrington L, Luttrell LM, Rockman HA (2003) Dual inhibition of beta-adrenergic and angiotensin II receptors by a single antagonist. Circulation 108:1611–1618

    CAS  PubMed  Google Scholar 

  30. Dzimiri N (2002) Receptor crosstalk: implications for cardiovascular function, disease and therapy. Eur J Biochem 269:4713–4730

    CAS  PubMed  Google Scholar 

  31. Münzel T, Feil R, Mülsch A, Lohmann SM, Hofmann F, Walter U (2003) Physiology and pathophysiology of vascular signaling controlled by cyclic guanosine 3′,5′-cyclic monophosphate–dependent protein kinase. Circulation 108:2172–2183

    PubMed  Google Scholar 

  32. von der Leyen HE, Dzau VJ (2001) Therapeutic potential of nitric oxide synthase gene manipulation. Circulation 103:2760–2765

    PubMed  Google Scholar 

  33. Loscalzo J (2001) Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res 88:756–762

    CAS  PubMed  Google Scholar 

  34. Champion HC, Skaf MW, Hare JM (2003) Role of nitric oxide in the pathophysiology of heart failure. Heart Fail Rev 8:35–46

    CAS  PubMed  Google Scholar 

  35. Jugdutt BI (2003) Nitric oxide and cardiovascular protection. Heart Fail Rev 8:29–34

    CAS  PubMed  Google Scholar 

  36. Young-Myeong K, Bombeck CA, Billiar TR (1999) Nitric oxide as a bifunctional regulator of apoptosis. Circ Res 84:253–256

    Google Scholar 

  37. Kuhn M (2003) Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase A. Circ Res 93:700–709

    CAS  PubMed  Google Scholar 

  38. Nobuyoshi M, Kimura T, Nosaka H et al (1988) Restenosis after successful percutaneous transluminal coronary angioplasty: serial angiographic follow-up of 229 patients. J Am Coll Cardiol 12:616–623

    CAS  PubMed  Google Scholar 

  39. Kipshidze NN, Tsapenko ML, Leon MB, Stone GW, Moses JW (2005) Update on drug-eluting coronary stents. Expert Rev Cardiovasc Ther 3:953–968

    CAS  PubMed  Google Scholar 

  40. van den Brand MJ, Rensing BJ, Morel MA et al (2002) The effect of completeness of revascularization on event-free survival at one year in the ARTS trial. J Am Coll Cardiol 39:559–564

    PubMed  Google Scholar 

  41. Topol EJ, Serruys PW (1998) Frontiers in interventional cardiology. Circulation 98:1802–1820

    CAS  PubMed  Google Scholar 

  42. Serruys PW, Foley DP, Suttorp MJ (2002) A randomized comparison of the value of additional stenting after optimal balloon angioplasty for long coronary lesions: final results of the additional value of NIR stents for treatment of long coronary lesions (ADVANCE) study. J Am Coll Cardiol 39:393–399

    PubMed  Google Scholar 

  43. Fischman DL, Leon MB, Baim DS et al (1994) A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. N Engl J Med 331:496–501

    CAS  PubMed  Google Scholar 

  44. Scott NA (2006) Restenosis following implantation of bare metal coronary stents: pathophysiology and pathways involved in the vascular response to injury. Adv Drug Deliv Rev 58:358–376

    CAS  PubMed  Google Scholar 

  45. Faries PL, Rohan DI, Takahara H (2001) Human vascular smooth muscle cells of diabetic origin exhibit increased proliferation, adhesion, and migration. J Vasc Surg 33:601–607

    CAS  PubMed  Google Scholar 

  46. El-Omar MM, Dangas G, Iakovou I, Mehran R (2001) Update on in-stent restenosis. Curr Interv Cardiol Rep 3:296–305

    PubMed  Google Scholar 

  47. Hill RA, Boland A, Dickson R et al (2007) Drug-eluting stents: a systematic review and economic evaluation. Health Technol Assess 11:iii, xi–221

    Google Scholar 

  48. Htay T, Liu MW (2005) Drug-eluting stent: a review and update. Vasc Health Risk Manag 1:263–276

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Steffel J, Tanner FC (2007) Biological effects of drug-eluting stents in the coronary circulation. Herz 32:268–273

    PubMed  Google Scholar 

  50. Mackman N (2008) Triggers, targets and treatments for thrombosis. Nature 451:914–918

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Kaul S, Shah PK, Diamond GA (2007) As time goes by: current status and future directions in the controversy over stenting. J Am Coll Cardiol 50:128–137

    PubMed  Google Scholar 

  52. Bavry AA, Kumbhani DJ, Helton TJ, Bhatt DL (2005) Risk of thrombosis with the use of sirolimus-eluting stents for percutaneous coronary intervention (from registry and clinical trial data). Am J Cardiol 95:1469–1472

    CAS  PubMed  Google Scholar 

  53. Moreno R, Fernández C, Hernández R et al (2005) Drug-eluting stent thrombosis: results from a pooled analysis including 10 randomized studies. J Am Coll Cardiol 45:954–959

    CAS  PubMed  Google Scholar 

  54. Luscher TF, Steffel J, Eberli FR et al (2007) Drug-eluting stent and coronary thrombosis: biological mechanisms and clinical implications. Circulation 115:1051–1058

    PubMed  Google Scholar 

  55. Legrand V (2007) Therapy insight: diabetes and drug-eluting stents. Nat Clin Pract Cardiovasc Med 4:143–150

    CAS  PubMed  Google Scholar 

  56. Kawaguchi R, Angiolillo DJ, Futamatsu H, Suzuki N, Bass TA, Costa MA (2007) Stent thrombosis in the era of drug-eluting stents. Minerva Cardioangiol 55:199–211

    CAS  PubMed  Google Scholar 

  57. Forrester JS, Fishbein M, Helfant R, Fagin J (1991) A paradigm for restenosis based on cell biology: clues for the development of new preventive therapies. J Am Coll Cardiol 17:758–769

    CAS  PubMed  Google Scholar 

  58. Costa MA, Simon DI (2005) Molecular basis of restenosis and drug-eluting stents. Circulation 111:2257–2273

    PubMed  Google Scholar 

  59. Libby P (2006) Atherosclerosis: disease biology affecting the coronary vasculature. Am J Cardiol 98:3Q–9Q

    CAS  PubMed  Google Scholar 

  60. Casscells W, Engler D, Willerson JT (1994) Mechanisms of restenosis. Tex Heart Inst J 21:68–77

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Welt FG, Rogers C (2002) Inflammation and restenosis in the stent era. Arterioscler Thromb Vasc Biol 22:1769–1776

    CAS  PubMed  Google Scholar 

  62. Mintz GS, Popma JJ, Hong MK et al (1996) Intravascular ultrasound findings after excimer laser coronary angioplasty. Cathet Cardiovasc Diagn 37:113–118

    CAS  PubMed  Google Scholar 

  63. Lundmark K, Tran PK, Kinsella MG, Clowes AW, Wight TN, Hedin U (2001) Perlecan inhibits SMC adhesion to fibronectin: role of heparan sulfate. J Cell Physiol 188:67–74

    CAS  PubMed  Google Scholar 

  64. Lerman A (2005) Restenosis: another “dysfunction” of the endothelium. Circulation 111:8–10

    PubMed  Google Scholar 

  65. Muto A, Fitzgerald TN, Pimiento JM et al (2007) Smooth muscle cell signal transduction: implications of vascular biology for vascular surgeons. J Vasc Surg 45:A15–A24

    PubMed  Google Scholar 

  66. Owens GK, Kumar MS, Wamhoff BR (2004) Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev 84:767–801

    CAS  PubMed  Google Scholar 

  67. Li X et al (1997) Suppression of smooth-muscle alpha-actin expression by platelet-derived growth factor in vascular smooth-muscle cells involves Ras and cytosolic phospholipase A2. Biochem J 327:709–716

    PubMed Central  PubMed  Google Scholar 

  68. Zalewski A, Shi Y, Johnson AG (2002) Diverse origin of intimal cells: smooth muscle cells, myofibroblasts, fibroblasts, and beyond? Circ Res 91:652–655

    CAS  PubMed  Google Scholar 

  69. Powell DW, Mifflin RC, Valentich JD, Crowe SE, Saada JI, West AB (1999) Myofibroblasts. I. Paracrine cells important in health and disease. Am J Physiol 277:C1–C9

    CAS  PubMed  Google Scholar 

  70. Yokote K, Take A, Nakaseko C et al (2003) Bone marrow-derived vascular cells in response to injury. J Atheroscler Thromb 10:205–210

    PubMed  Google Scholar 

  71. Bornfeldt KE, Krebs EG (1999) Crosstalk between protein kinase A and growth factor receptor signaling pathways in arterial smooth muscle. Cell Signal 11:465–477

    CAS  PubMed  Google Scholar 

  72. Seger R, Krebs EG (1995) The MAPK signaling cascade. FASEB J 9:726–735

    CAS  PubMed  Google Scholar 

  73. Asada H, Paszkowiak J, Teso D et al (2005) Sustained orbital shear stress stimulates smooth muscle cell proliferation via the extracellular signal-regulated protein kinase 1/2 pathway. J Vasc Surg 42:772–780

    PubMed  Google Scholar 

  74. Nishida E, Gotoh Y (1993) The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci 18:128–131

    CAS  PubMed  Google Scholar 

  75. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185

    CAS  PubMed  Google Scholar 

  76. Liu Y, McDonald OG, Shang Y, Hoofnagle MH, Owens GK (2005) Kruppel-like factor 4 abrogates myocardin-induced activation of smooth muscle gene expression. J Biol Chem 280:9719–9727

    CAS  PubMed  Google Scholar 

  77. McDonald OG, Warnhoff BR, Hoofnagle MH, Owens GK (2006) Control of SRF binding to CArG box chromatin regulates smooth muscle gene expression in vivo. J Clin Invest 116:36–48

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Hedin U, Roy J, Tran PK (2004) Control of smooth muscle cell proliferation in vascular disease. Curr Opin Lipidol 15:559–565

    CAS  PubMed  Google Scholar 

  79. Geng YJ, Libby P (2002) Progression of atheroma: a struggle between death and procreation. Arterioscler Thromb Vasc Biol 22:1370–1380

    CAS  PubMed  Google Scholar 

  80. Raines EW (2000) The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease. Int J Exp Pathol 81:173–182

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Dzau VJ, Braun-Dullaeus RC, Sedding DG (2002) Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 8:1249–1256

    CAS  PubMed  Google Scholar 

  82. Walworth NC (2000) Cell-cycle checkpoint kinases: checking in on the cell cycle. Curr Opin Cell Biol 12:697–704

    CAS  PubMed  Google Scholar 

  83. Weinberg RA (1996) E2F and cell proliferation: a world turned upside down. Cell 85:457–459

    CAS  PubMed  Google Scholar 

  84. Harbour JW, Dean DC (2000) Rb function in cell-cycle regulation and apoptosis. Nat Cell Biol 2:E65–E67

    CAS  PubMed  Google Scholar 

  85. Tanner FC, Boehm M, Akyürek LM et al (2000) Differential effects of the cyclin-dependent kinase inhibitors p27(Kip1), p21(Cip1), and p16(Ink4) on vascular smooth muscle cell proliferation. Circulation 101:2022–2025

    CAS  PubMed  Google Scholar 

  86. Gizard F, Bruemmer D (2008) Transcriptional control of vascular smooth muscle cell proliferation by peroxisome proliferator-activated receptor-gamma: therapeutic implications for cardiovascular diseases. PPAR Res 2008:429123

    PubMed Central  PubMed  Google Scholar 

  87. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    CAS  PubMed  Google Scholar 

  88. Braun-Dullaeus RC, Mann MJ, Dzau VJ (1998) Cell cycle progression: new therapeutic target for vascular proliferative disease. Circulation 98:82–89

    CAS  PubMed  Google Scholar 

  89. Quizhpe AR, Feres F, de Ribamar Costa J Jr et al (2007) Drug-eluting stents vs bare metal stents for the treatment of large coronary vessels. Am Heart J 154:373–378

    CAS  PubMed  Google Scholar 

  90. Neuhaus P, Klupp J, Langrehr JM (2001) mTOR inhibitors: an overview. Liver Transpl 7:473–484

    CAS  PubMed  Google Scholar 

  91. Sehgal SN (2003) Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 35:7S–14S

    CAS  PubMed  Google Scholar 

  92. Ruygrok PN, Muller DW, Serruys PW (2003) Rapamycin in cardiovascular medicine. Intern Med J 33:103–109

    CAS  PubMed  Google Scholar 

  93. Abizaid A (2007) Sirolimus-eluting coronary stents: a review. Vasc Health Risk Manag 3:191–201

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Larkin JM, Kaye SB (2006) Epothilones in the treatment of cancer. Expert Opin Investig Drugs 15:691–702

    CAS  PubMed  Google Scholar 

  95. Sheiban I, Moretti C, Oliaro E et al (2003) Evolving standard in the treatment of coronary artery disease. Drug-eluting stents. Minerva Cardioangiol 51:485–492

    CAS  PubMed  Google Scholar 

  96. Kukreja N, Onuma Y, Daemen J, Serruys PW (2008) The future of drug-eluting stents. Pharmacol Res 57:171–180

    CAS  PubMed  Google Scholar 

  97. Okamoto S, Inden M, Setsuda M, Konishi T, Nakano T (1992) Effects of trapidil (triazolopyrimidine), a platelet-derived growth factor antagonist, in preventing restenosis after percutaneous transluminal coronary angioplasty. Am Heart J 123:1439–1444

    CAS  PubMed  Google Scholar 

  98. Powell JS, Clozel JP, Müller RK et al (1989) Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science 245:186–188

    CAS  PubMed  Google Scholar 

  99. Garas SM, Huber P, Scott NA (2001) Overview of therapies for prevention of restenosis after coronary interventions. Pharmacol Ther 92:165–178

    CAS  PubMed  Google Scholar 

  100. Reidy MA, Fingerle J, Lindner V (1992) Factors controlling the development of arterial lesions after injury. Circulation 86:III43–III46

    CAS  PubMed  Google Scholar 

  101. Meredith IT, Anderson TJ, Uehata A, Yeung AC, Selwyn AP, Ganz P (1993) Role of endothelium in ischemic coronary syndromes. Am J Cardiol 72:27C–31C. discussion 31C–32C

    Google Scholar 

  102. Versari D, Lerman LO, Lerman A (2007) The importance of reendothelialization after arterial injury. Curr Pharm Des 13:1811–1824

    CAS  PubMed  Google Scholar 

  103. Rao RM, Yang L, Garcia-Cardena G, Luscinskas FW (2007) Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ Res 101:234–247

    CAS  PubMed  Google Scholar 

  104. Berk BC (2001) Vascular smooth muscle growth: autocrine growth mechanisms. Physiol Rev 81:999–1030

    CAS  PubMed  Google Scholar 

  105. Langille BL, O’Donnell F (1986) Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent. Science 231:405–407

    CAS  PubMed  Google Scholar 

  106. Datta YH, Ewenstein BM (2001) Regulated secretion in endothelial cells: biology and clinical implications. Thromb Haemost 86:1148–1155

    CAS  PubMed  Google Scholar 

  107. Celermajer DS (1997) Endothelial dysfunction: does it matter? Is it reversible? J Am Coll Cardiol 30:325–333

    CAS  PubMed  Google Scholar 

  108. Leopold JA, Loscalzo J (2000) Clinical importance of understanding vascular biology. Cardiol Rev 8:115–123

    CAS  PubMed  Google Scholar 

  109. Tanguay JF (2005) Vascular healing after stenting: the role of 17-beta-estradiol in improving re-endothelialization and reducing restenosis. Can J Cardiol 21:1025–1030

    CAS  PubMed  Google Scholar 

  110. Adams B, Xiao Q, Xu Q (2007) Stem cell therapy for vascular disease. Trends Cardiovasc Med 17:246–251

    CAS  PubMed  Google Scholar 

  111. Sprague EA, Luo J, Palmaz JC (2000) Endothelial cell migration onto metal stent surfaces under static and flow conditions. J Long Term Eff Med Implants 10:97–110

    CAS  PubMed  Google Scholar 

  112. Davies PF (1995) Flow-mediated endothelial mechanotransduction. Physiol Rev 75:519–560

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Garcia-Cardena G, Comander J, Anderson KR, Blackman BR, Gimbrone MA Jr (2001) Biomechanical activation of vascular endothelium as a determinant of its functional phenotype. Proc Natl Acad Sci U S A 98:4478–4485

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Lin K, Hsu PP, Chen BP et al (2000) Molecular mechanism of endothelial growth arrest by laminar shear stress. Proc Natl Acad Sci U S A 97:9385–9389

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Levesque MJ, Nerem RM, Sprague EA (1990) Vascular endothelial cell proliferation in culture and the influence of flow. Biomaterials 11:702–707

    CAS  PubMed  Google Scholar 

  116. LaDisa JF Jr, Guler I, Olson LE et al (2003) Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation. Ann Biomed Eng 31:972–980

    PubMed  Google Scholar 

  117. Colombo A, Sangiorgi G (2004) The monocyte: the key in the lock to reduce stent hyperplasia? J Am Coll Cardiol 43:24–26

    PubMed  Google Scholar 

  118. Farb A, Sangiorgi G, Carter AJ et al (1999) Pathology of acute and chronic coronary stenting in humans. Circulation 99:44–52

    CAS  PubMed  Google Scholar 

  119. Welt FG, Tso C, Edellman ER et al (2003) Leukocyte recruitment and expression of chemokines following different forms of vascular injury. Vasc Med 8:1–7

    PubMed  Google Scholar 

  120. Tanaka H, Sukhova GK, Swanson SJ et al (1993) Sustained activation of vascular cells and leukocytes in the rabbit aorta after balloon injury. Circulation 88:1788–1803

    CAS  PubMed  Google Scholar 

  121. Rogers C, Welt FG, Karnovsky MJ, Edelman ER (1996) Monocyte recruitment and neointimal hyperplasia in rabbits. Coupled inhibitory effects of heparin. Arterioscler Thromb Vasc Biol 16:1312–1318

    CAS  PubMed  Google Scholar 

  122. Rogers C, Edelman ER, Simon DI (1998) A mAb to the beta2-leukocyte integrin Mac-1 (CD11b/CD18) reduces intimal thickening after angioplasty or stent implantation in rabbits. Proc Natl Acad Sci U S A 95:10134–10139

    CAS  PubMed Central  PubMed  Google Scholar 

  123. McEver RP, Cummings RD (1997) Role of PSGL-1 binding to selectins in leukocyte recruitment. J Clin Invest 100:S97–S103

    CAS  PubMed  Google Scholar 

  124. Weber C (2005) Platelets and chemokines in atherosclerosis: partners in crime. Circ Res 96:612–616

    CAS  PubMed  Google Scholar 

  125. Kitamoto S, Egashira K (2003) Anti-monocyte chemoattractant protein-1 gene therapy for cardiovascular diseases. Expert Rev Cardiovasc Ther 1:393–400

    CAS  PubMed  Google Scholar 

  126. Wainwright CL, Miller AM, Wadsworth RM (2001) Inflammation as a key event in the development of neointima following vascular balloon injury. Clin Exp Pharmacol Physiol 28:891–895

    CAS  PubMed  Google Scholar 

  127. Cipollone F, Marini M, Fazia M (2001) Elevated circulating levels of monocyte chemoattractant protein-1 in patients with restenosis after coronary angioplasty. Arterioscler Thromb Vasc Biol 21:327–334

    CAS  PubMed  Google Scholar 

  128. Oshima S, Ogawa H, Hokimoto S et al (2001) Plasma monocyte chemoattractant protein-1 antigen levels and the risk of restenosis after coronary stent implantation. Jpn Circ J 65:261–264

    CAS  PubMed  Google Scholar 

  129. Bursill CA, Channon KM, Greaves DR (2004) The role of chemokines in atherosclerosis: recent evidence from experimental models and population genetics. Curr Opin Lipidol 15:145–149

    CAS  PubMed  Google Scholar 

  130. Tashiro H, Shimokawa H, Sadamatsu K, Aoki T, Yamamoto K (2001) Role of cytokines in the pathogenesis of restenosis after percutaneous transluminal coronary angioplasty. Coron Artery Dis 12:107–113

    CAS  PubMed  Google Scholar 

  131. Arend WP, Guthridge CJ (2000) Biological role of interleukin 1 receptor antagonist isoforms. Ann Rheum Dis 59:i60–i64

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Sardella G, Mariani P, D’Alessandro M et al (2006) Early elevation of interleukin-1beta and interleukin-6 levels after bare or drug-eluting stent implantation in patients with stable angina. Thromb Res 117:659–664

    CAS  PubMed  Google Scholar 

  133. Odrowaz-Sypniewska G (2007) Markers of pro-inflammatory and pro-thrombotic state in the diagnosis of metabolic syndrome. Adv Med Sci 52:246–250

    CAS  PubMed  Google Scholar 

  134. Monraats PS, Pires NM, Schepers A et al (2005) Tumor necrosis factor-alpha plays an important role in restenosis development. FASEB J 19:1998–2004

    CAS  PubMed  Google Scholar 

  135. Kawamoto R, Hatakeyama K, Imamura T et al (2004) Relation of C-reactive protein to restenosis after coronary stent implantation and to restenosis after coronary atherectomy. Am J Cardiol 94:104–107

    CAS  PubMed  Google Scholar 

  136. Mazer SP, Rabbani LE (2004) Evidence for C-reactive protein’s role in (CRP) vascular disease: atherothrombosis, immuno-regulation and CRP. J Thromb Thrombolysis 17:95–105

    CAS  PubMed  Google Scholar 

  137. Gaspardone A, Versaci F, Tomai F et al (2006) C-Reactive protein, clinical outcome, and restenosis rates after implantation of different drug-eluting stents. Am J Cardiol 97:1311–1316

    CAS  PubMed  Google Scholar 

  138. Moreno PR, Bernardi VH, López-Cuéllar J et al (1996) Macrophage infiltration predicts restenosis after coronary intervention in patients with unstable angina. Circulation 94:3098–3102

    CAS  PubMed  Google Scholar 

  139. Stakos DA, Kotsianidis I, Tziakas DN et al (2007) Leukocyte activation after coronary stenting in patients during the subacute phase of a previous ST-elevation myocardial infarction. Coron Artery Dis 18:105–110

    PubMed  Google Scholar 

  140. Funayama H, Ishikawa SE, Kubo N, Yasu T, Saito M, Kawakami M (2006) Close association of regional interleukin-6 levels in the infarct-related culprit coronary artery with restenosis in acute myocardial infarction. Circ J 70:426–429

    CAS  PubMed  Google Scholar 

  141. Cipollone F, Ferri C, Desideri G et al (2003) Preprocedural level of soluble CD40L is predictive of enhanced inflammatory response and restenosis after coronary angioplasty. Circulation 108:2776–2782

    CAS  PubMed  Google Scholar 

  142. Lin ZQ, Kondo T, Ishida Y, Takayasu T, Mukaida N (2003) Essential involvement of IL-6 in the skin wound-healing process as evidenced by delayed wound healing in IL-6-deficient mice. J Leukoc Biol 73:713–721

    CAS  PubMed  Google Scholar 

  143. Becker RC (2003) Complicated myocardial infarction. Crit Pathw Cardiol 2:125–152

    PubMed  Google Scholar 

  144. Vishnevetsky D, Kiyanista VA, Gandhi PJ (2004) CD40 ligand: a novel target in the fight against cardiovascular disease. Ann Pharmacother 38:1500–1508

    CAS  PubMed  Google Scholar 

  145. Yan JC, Ding S, Liang Y et al (2007) Relationship between upregulation of CD40 system and restenosis in patients after percutaneous coronary intervention. Acta Pharmacol Sin 28:339–343

    CAS  PubMed  Google Scholar 

  146. Shebuski RJ, Kilgore KS (2002) Role of inflammatory mediators in thrombogenesis. J Pharmacol Exp Ther 300:729–735

    CAS  PubMed  Google Scholar 

  147. Giesen PL, Fyfe BS, Fallon JT et al (2000) Intimal tissue factor activity is released from the arterial wall after injury. Thromb Haemost 83:622–628

    CAS  PubMed  Google Scholar 

  148. Martorell L, Martinez-Gonzalez J, Rodriguez C, Gentile M, Calvayrac O, Badimon L (2008) Thrombin and protease-activated receptors (PARs) in atherothrombosis. Thromb Haemost 99:305–315

    CAS  PubMed  Google Scholar 

  149. Hideshima T, Rodar K, Chauhan D, Anderson KC (2005) Cytokines and signal transduction. Best Pract Res Clin Haematol 18:509–524

    CAS  PubMed  Google Scholar 

  150. Barish GD, Atkins AR, Downes M et al (2008) PPARdelta regulates multiple proinflammatory pathways to suppress atherosclerosis. Proc Natl Acad Sci U S A 105:4271–4276

    CAS  PubMed Central  PubMed  Google Scholar 

  151. Baron AD (2002) Insulin resistance and vascular function. J Diabetes Complications 16:92–102

    PubMed  Google Scholar 

  152. Kim F, Pham M, Luttrell I et al (2007) Toll-like receptor-4 mediates vascular inflammation and insulin resistance in diet-induced obesity. Circ Res 100:1589–1596

    CAS  PubMed  Google Scholar 

  153. Nilsson J, Nilsson LM, Chen YM, Molkentin JD, Erlinge D, Gomez MF (2006) High glucose activates nuclear factor of activated T cells in native vascular smooth muscle. Arterioscler Thromb Vasc Biol 26:794–800

    CAS  PubMed  Google Scholar 

  154. Zhang L, Peppel K, Sivashanmugam P et al (2007) Expression of tumor necrosis factor receptor-1 in arterial wall cells promotes atherosclerosis. Arterioscler Thromb Vasc Biol 27:1087–1094

    PubMed Central  PubMed  Google Scholar 

  155. Heyninck K, Beyaert R (2001) Crosstalk between NF-kappaB-activating and apoptosis-inducing proteins of the TNF-receptor complex. Mol Cell Biol Res Commun 4:259–265

    CAS  PubMed  Google Scholar 

  156. Schonbeck U, Libby P (2001) CD40 signaling and plaque instability. Circ Res 89:1092–1103

    CAS  PubMed  Google Scholar 

  157. Vanichakarn P, Blair P, Wu C, Freedman JE, Chakrabarti S (2008) Neutrophil CD40 enhances platelet-mediated inflammation. Thromb Res 122:346–358

    CAS  PubMed  Google Scholar 

  158. Lutgens E, Lievens D, Beckers L, Donners M, Daemen M (2007) CD40 and its ligand in atherosclerosis. Trends Cardiovasc Med 17:118–123

    CAS  PubMed  Google Scholar 

  159. Chakrabarti S, Blair P, Freedman JE (2007) CD40-40L signaling in vascular inflammation. J Biol Chem 282:18307–18317

    CAS  PubMed  Google Scholar 

  160. Zirlik A, Bavendiek U, Libby P et al (2007) TRAF-1, -2, -3, -5, and -6 are induced in atherosclerotic plaques and differentially mediate proinflammatory functions of CD40L in endothelial cells. Arterioscler Thromb Vasc Biol 27:1101–1107

    CAS  PubMed  Google Scholar 

  161. Hoge M, Amar S (2006) Role of interleukin-1 in bacterial atherogenesis. Drugs Today (Barc) 42:683–688

    CAS  Google Scholar 

  162. Fogal B, Hewett SJ (2008) Interleukin-1beta: a bridge between inflammation and excitotoxicity? J Neurochem 106:1–23

    CAS  PubMed  Google Scholar 

  163. Li X, Qin J (2005) Modulation of Toll-interleukin 1 receptor mediated signaling. J Mol Med 83:258–266

    CAS  PubMed  Google Scholar 

  164. Boraschi D, Tagliabue A (2006) The interleukin-1 receptor family. Vitam Horm 74:229–254

    CAS  PubMed  Google Scholar 

  165. Gottipati S, Rao NL, Fung-Leung WP (2008) IRAK1: a critical signaling mediator of innate immunity. Cell Signal 20:269–276

    CAS  PubMed  Google Scholar 

  166. Mullaly SC, Kubes P (2004) Toll gates and traffic arteries: from endothelial TLR2 to atherosclerosis. Circ Res 95:657–659

    CAS  PubMed  Google Scholar 

  167. Schoneveld AH, Oude Nijhuis MM, van Middelaar B, Laman JD, de Kleijn DP, Pasterkamp G (2005) Toll-like receptor 2 stimulation induces intimal hyperplasia and atherosclerotic lesion development. Cardiovasc Res 66:162–169

    CAS  PubMed  Google Scholar 

  168. Shishido T, Nozaki N, Takahashi H et al (2006) Central role of endogenous Toll-like receptor-2 activation in regulating inflammation, reactive oxygen species production, and subsequent neointimal formation after vascular injury. Biochem Biophys Res Commun 345:1446–1453

    CAS  PubMed  Google Scholar 

  169. Harrington LS, Belcher E, Moreno L, Carrier MJ, Mitchell JA (2007) Homeostatic role of Toll-like receptor 4 in the endothelium and heart. J Cardiovasc Pharmacol Ther 12:322–326

    CAS  PubMed  Google Scholar 

  170. de Kleijn MJ, Wilmink HW, Bots ML et al (2001) Hormone replacement therapy and endothelial function. Results of a randomized controlled trial in healthy postmenopausal women. Atherosclerosis 159:357–365

    PubMed  Google Scholar 

  171. Martin MU, Wesche H (2011) Summary and comparison of the signaling mechanisms of the Toll/interleukin-1 receptor family. Biochim Biophys Acta 1592:265–280

    Google Scholar 

  172. Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663

    CAS  PubMed  Google Scholar 

  173. Chen FE, Huang DB, Chen YQ, Ghosh G (1998) Crystal structure of p50/p65 heterodimer of transcription factor NF-kappaB bound to DNA. Nature 391:410–413

    CAS  PubMed  Google Scholar 

  174. Li ZW, Chu W, Hu Y et al (1999) The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J Exp Med 189:1839–1845

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Li X, Stark GR (2002) NFkappaB-dependent signaling pathways. Exp Hematol 30:285–296

    CAS  PubMed  Google Scholar 

  176. Bavry AA, Kumbhani DJ, Helton TJ, Borek PP, Mood GR, Bhatt DL (2006) Late thrombosis of drug-eluting stents: a meta-analysis of randomized clinical trials. Am J Med 119:1056–1061

    CAS  PubMed  Google Scholar 

  177. Iakovou I, Schmidt T, Bonizzoni E et al (2005) Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA 293:2126–2130

    CAS  PubMed  Google Scholar 

  178. Waters RE, Kandzari DE, Phillips HR, Crawford LE, Sketch MH Jr (2005) Late thrombosis following treatment of in-stent restenosis with drug-eluting stents after discontinuation of antiplatelet therapy. Catheter Cardiovasc Interv 65:520–524

    PubMed  Google Scholar 

  179. Eisenreich A, Celebi O, Goldin-Lang P, Schultheiss HP, Rauch U (2008) Upregulation of tissue factor expression and thrombogenic activity in human aortic smooth muscle cells by irradiation, rapamycin and paclitaxel. Int Immunopharmacol 8:307–311

    CAS  PubMed  Google Scholar 

  180. Nakazawa G, Finn AV, Virmani R (2007) Vascular pathology of drug-eluting stents. Herz 32:274–280

    PubMed  Google Scholar 

  181. Palmerini T, Biondi-Zoccai G, Della Riva D et al (2014) Clinical outcomes with bioabsorbable polymer-versus durable polymer-based drug-eluting and bare-metal stents: evidence from a comprehensive network meta-analysis. J Am Coll Cardiol 63:299–307

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel C. Sigg MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sigg, D.C., Hezi-Yamit, A. (2015). Cardiac and Vascular Receptors and Signal Transduction. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-19464-6_15

Download citation

Publish with us

Policies and ethics