Skip to main content

Maximization of Strengthening Effect of Microscopic Morphology in Duplex Steels

  • Chapter
  • First Online:
From Creep Damage Mechanics to Homogenization Methods

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 64))

Abstract

An inverse analysis method based on nonlinear finite element analysis is developed to find an optimized morphology of periodic microstructure for improving the macroscopic mechanical properties in duplex elastoplastic solids. Here a gradient-based computational optimization method and two types of homogenization methods are employed. In this study, the optimization problem is defined as the maximization of the sum of macroscopic external works for several macroscopic deformation modes, enabling us to obtain a high strength material. The morphologic strengthening effect is discussed through a comparison with experiments and classical theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allaire G (1992) Homogenization and two-scale convergence. SIAM J Math Anal 23:1482–1518

    Article  MATH  MathSciNet  Google Scholar 

  • Allaire G (1996) Mathematical approaches and methods. In: Hornung U (ed) Homogenization and porous media. Springer, New York, pp 225–250

    Google Scholar 

  • Ameyama K, Fujiwara H (2012) Creation of harmonic structure materials with outstanding mechanical properties. Mater Sci Forum 706–709:9–16

    Article  Google Scholar 

  • Chen LQ (2002) Phase-field models for microstructure evolutions. Ann Rev Mater Res 32:113–140

    Article  Google Scholar 

  • Chen T, Dvorak G, Benveniste Y (1992) Mori-tanaka estimates of the overall elastic moduli of certain composite materials. Trans ASME J Appl Mech 59:539–546

    Article  MATH  Google Scholar 

  • Dieter G, Bacon D (1989) Mechanical metallurgy, 3rd edn. In: Materials science & engineering. McGraw Hill, London

    Google Scholar 

  • Giusti S, Novotny A, de Souza Neto E (2010) Sensitivity of macroscopic response of elastic microstructures to the insertion of inclusions. Proc R Soc A 466:1703–1723

    Article  MATH  Google Scholar 

  • Guedes J, Kikuchi N (1990) Preprocessing and postprocessing for materials based on the homogenization method with adaptive finite element methods. Comput Meth Appl Mech Eng 83:143–198

    Article  MATH  MathSciNet  Google Scholar 

  • Hashin Z, Shtrikman S (1963) A variational approach to the elastic behavior of multiphase minerals. J Mech Phys Solids 11:127–140

    Article  MATH  MathSciNet  Google Scholar 

  • Kaufman L (2008) Computational thermodynamics and materials design. Calphad 25:141–161

    Article  Google Scholar 

  • Kimura Y, Inoue T, Yin F, Tsuzaki K (2008) Inverse temperature dependence of toughness in an ultrafine grain-structure steel. Science 320:1057–1060

    Article  Google Scholar 

  • Koseki T, Inoue J, Nambu S (2014) Development of multilayer steels for improved combinations of high strength and high ductility. Mater Trans 55:227–237

    Article  Google Scholar 

  • Lukas H, Fries S, Sundman B (2007) Computational thermodynamics—the calphad method. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Matsui K, Terada K (2004) Continuous approximation of material distribution for topology optimization. Inter J Numer Methods Eng 84:733–756

    MathSciNet  Google Scholar 

  • Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling for microstructure evolution. Calphad 32:268–294

    Article  Google Scholar 

  • Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571–574

    Article  Google Scholar 

  • Ohata M, Suzuki M, Ui A, Minami F (2010) 3d-simulation of ductile failure in two-phase structural steel with heterogeneous microstructure. Engrg Fracture Mech 77:277–284

    Article  Google Scholar 

  • Ohno N, Matsuda T, Wu X (2001) A homogenization theory for elastic-viscoplastic composites with point symmetry of internal distributions. Inter J Solids Struct 38:2867–2878

    Article  MATH  MathSciNet  Google Scholar 

  • Reuss A (1929) Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. Z Angew Math Mech 9:49–58

    Google Scholar 

  • Rudiono, Tomota Y (1997) Application of the secant method to prediction of flow curves in multi microstructure steels. Acta Mater 45:1923–1929

    Google Scholar 

  • Setoyama D, Watanabe I, Iwata N (2012) Comparative study of microscopic morphology and mechanical behavior between experiments and numerical analyses for ferrite-pearlite dual component steel (in Japanese). Tetsu-to-Hagane 98:290–295

    Article  Google Scholar 

  • Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31:2313–2329

    Article  MATH  MathSciNet  Google Scholar 

  • Suzuki K, Kikuchi N (1991) A homogenization method for shape and topology optimization. Comput Methods Appl Mech Eng 93:291–318

    Article  MATH  Google Scholar 

  • Terada K, Saiki I, Matsui K, Yamakawa Y (2003) Two-scale kinematics and linearization for simultaneous two-scale analysis of periodic heterogeneous solids at finite strain. Comput Meth Appl Mech Eng 192:3531–3563

    Article  MATH  MathSciNet  Google Scholar 

  • Voigt W (1910) Lehrbuch der Kristallphysik. Teubner, Leipzig

    Google Scholar 

  • Watanabe I, Terada K (2010) A method of predicting macroscopic yield strength of polycrystalline metals subjected to plastic forming by micro-macro de-coupling scheme. Int J Mech Sci 52:343–355

    Google Scholar 

  • Watanabe I, Setoyama D, Nagasako N, Iwata N, Nakanishi K (2012) Multiscale prediction of mechanical behavior of ferrite-pearlite steel with numerical material testing. Int J Numer Methods Eng 89:829–845

    Article  MATH  Google Scholar 

  • Weng G (1990) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571–574

    Google Scholar 

Download references

Acknowledgments

This research was supported by the Japan Science and Technology Agency under collaborative research based on industrial demand “Heterogeneous Structure Control: Towards Innovative Development of Metallic Structural Materials” and Grant-in-Aid for Young Scientists (No. 25102711, 25820359).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikumu Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Watanabe, I., Nakamura, G., Yuge, K., Setoyama, D., Iwata, N. (2015). Maximization of Strengthening Effect of Microscopic Morphology in Duplex Steels. In: Altenbach, H., Matsuda, T., Okumura, D. (eds) From Creep Damage Mechanics to Homogenization Methods. Advanced Structured Materials, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-19440-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19440-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19439-4

  • Online ISBN: 978-3-319-19440-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics