Skip to main content

Phase-Field Modeling for Dynamic Recrystallization

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 64))

Abstract

Hot working is a process in which metallic materials are worked at the elevated temperatures above the recrystallization temperature. During the hot working of the low-to-medium stacking fault energy metals, the dynamic recrystallization (DRX) occurs. The mechanical properties of the DRX materials during the hot working are largely affected by the nucleation and growth of the dynamic recrystallized grains. In this article, the application of a phase-field method, which has emerged as a powerful numerical tool to simulate the material microstructure evolutions, to the simulations of the deformation and microstructure during the DRX is reviewed. First, the multi-phase-field dynamic recrystallization (MPF-DRX) model, which can simulate the mechanical behaviors of a computational domain based on the DRX microstructure evolutions simulated by the multi-phase-field (MPF) method, is introduced. Next, a hot-working multi-scale model, where the macro deformation is simulated by the finite element (FE) method and the microstructure evolution is simulated by the MPF-DRX method, is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abrivard G, Busso EP, Forest S, Appolaire B (2012) Phase field modelling of grain boundary motion driven by curvature and stored energy gradients. Part II: application to recrystallisation. Philos Mag 92(28–30):3643–3664

    Article  Google Scholar 

  • Adebanjo RO, Miller AK (1989) Modelling the effects of recrystallization on the flow behavior during hot deformation by modifying an existing constitutive model I: conceptual development of the MATMOD-ReX equations. Mater Sci Eng A 119:87–94

    Article  Google Scholar 

  • Anand L (1985) Constitutive equations for hot-working of metals. Int J Plast 1(3):213–231

    Article  MATH  Google Scholar 

  • Anand L, Zavaliangos A, von Turkovich BF (1990) Hot working—constitutive equations and computational procedures. CIRP Ann Manuf Technol 39(1):235–238

    Article  Google Scholar 

  • Anderson MP, Srolovitz DJ, Grest G, Sahni PS (1984) Computer simulation of grain growth—I Kinetics. Acta Metall 32(5):783–791

    Article  Google Scholar 

  • Asta M, Beckermann C, Karma A, Kurz W, Napolitano R, Plapp M, Purdy G, Rappaz M, Trivedi R (2009) Solidification microstructures and solid-state parallels: recent developments, future directions. Acta Metall 57(4):941–971

    Google Scholar 

  • Bailey JE, Hirsch PB (1960) The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philos Mag 53(5):485–497

    Article  Google Scholar 

  • Bernacki M, Logé RE, Coupez T (2011) Level set framework for the finite-element modelling of recrystallization and grain growth in polycrystalline materials. Scripta Mater 64(6):525–528

    Article  Google Scholar 

  • Blaz L, Sakai T, Jonas JJ (1983) Effect of initial grain size on dynamic recrystallization of copper. Met Sci 17(12):609–616

    Google Scholar 

  • Brown AA, Bammann DJ (2012) Validation of a model for static and dynamic recrystallization in metals. Int J Plast 32–33:17–35

    Article  Google Scholar 

  • Brown SB, Kim KH, Anand L (1989) An internal variable constitutive model for hot working of metals. Int J Plast 5(2):95–130

    Article  MATH  Google Scholar 

  • Busso EP (1998) A continuum theory for dynamic recrystallization with microstructure-related length scales. Int J Plast 14(4–5):319–353

    Article  MATH  Google Scholar 

  • Chen LQ (2014a) Phase-field method and materials genome initiative (MGI). Chin Sci Bull 59(15):1641–1645

    Article  Google Scholar 

  • Chen LQ (2014b) Phase-field models for microstructure evolution. Annu Rev Mater Sci 32:113–140

    Article  Google Scholar 

  • Cho JR, Jeong HS, Cha DJ, Bae WB, Lee JW (2005) Prediction of microstructural evolution and recrystallization behaviors of a hot working die steel by FEM. J Mater Process Technol 160(1):1–8

    Article  Google Scholar 

  • Chuan W, He Y, Wei LH (2013) Modeling of discontinuous dynamic recrystallization of a near-\(\alpha \) titanium alloy IMI834 during isothermal hot compression by combining a cellular automaton model with a crystal plasticity finite element method. Comput Mater Sci 79:944–959

    Article  Google Scholar 

  • Davenport SB, Silk NJ, Sparks CN, Sellars CM (2000) Development of constitutive equations for modelling of hot rolling. Mater Sci Technol 16(5):539–546

    Article  Google Scholar 

  • Dawson PR (1984) A model for the hot or warm forming of metals with special use of deformation mechanism maps. Int J Mech Sci 26(4):227–244

    Article  MATH  Google Scholar 

  • Ding R, Guo Z (2002) Microstructural modelling of dynamic recrystallisation using an extended cellular automaton approach. Comput Mater Sci 23(1–4):209–218

    Article  Google Scholar 

  • Ding R, Guo ZX (1984) Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization. Acta Mater 49(16):3163–3175

    Article  Google Scholar 

  • Ding R, Guo ZX (2004) Microstructural evolution of a Ti-6Al-4V alloy during \(\beta \)-phase processing: experimental and simulative investigations. Mater Sci Eng A 365(1–2):172–179

    Article  Google Scholar 

  • Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Jensen DJ, Kassner ME, King WE, McNelley TR, McQueen HJ, Rollett AD (2004) Current issues in recrystallization: a review. Mater Sci Eng A 238(2):219–274

    Article  Google Scholar 

  • Dunne FPE, Nanneh MM, Zhou M (1997) Anisothermal large deformation constitutive equations and their application to modelling titanium alloy in forging. Philos Mag A 75(3):587–610

    Article  Google Scholar 

  • Fan D, Chen LQ (1997) Anisothermal large deformation constitutive equations and their application to modelling titanium alloy in forging. Acta Mater 45(2):611–622

    Article  MathSciNet  Google Scholar 

  • Fan XG, Yang H (2011) Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution. Int J Plast 27(11):1833–1852

    Article  MATH  MathSciNet  Google Scholar 

  • Frommert M, Gottstein G (2009) Mechanical behavior and microstructure evolution during steady-state dynamic recrystallization in the austenitic steel 800H. Mater Sci Eng A 506(1–2):101–110

    Article  Google Scholar 

  • Galantucci LM, Tricarico L (1999) Thermo-mechanical simulation of a rolling process with an FEM approach. J Mater Process Technol 92–93:494–501

    Article  Google Scholar 

  • Goetz RL (2005) Particle stimulated nucleation during dynamic recrystallization using a cellular automata model. Scripta Mater 52(9):851–856

    Article  Google Scholar 

  • Goetz RL, Seetharaman V (1998) Modeling dynamic recrystallization using cellular automata. Scripta Mater 38(3):405–413

    Article  Google Scholar 

  • Gronostajski Z (2000) The constitutive equations for FEM analysis. J Mater Process Technol 106(1–3):40–44

    Article  Google Scholar 

  • Hallberg H, Wallin M, Ristinmaa M (2010) Simulation of discontinuous dynamic recrystallization in pure Cu using a probabilistic cellular automaton. Comput Mater Sci 49(1):25–34

    Google Scholar 

  • Hassold GN, Holm EA, Srolovitz DJ (1990) Effects of particle size on inhibited grain growth. Scr Metall Mater 24(1):101–106

    Article  Google Scholar 

  • Holm E, Battaile C (2001) The computer simulation of microstructural evolution. JOM J Min Met Mater Soc 53(9):20–23

    Article  Google Scholar 

  • Humphreys F, Hatherly M (1995) Recrystallization and related annealing phenomena. Pergamon, Oxford

    Google Scholar 

  • Jin Z, Cui Z (2010) Investigation on strain dependence of dynamic recrystallization behavior using an inverse analysis method. Mater Sci Eng A 527(13–14):3111–3119

    Article  Google Scholar 

  • Kim S, Kim D, Kim W, Park Y (2006) Computer simulations of two-dimensional and three-dimensional ideal grain growth. Phys Rev E Stat Nonlinear Soft Matter Phys 74(6):061605

    Google Scholar 

  • Kocks UF (1976) Laws for work-hardening and low-temperature creep. Trans ASME J Eng Mater Technol 98(1):76–85

    Article  Google Scholar 

  • Kugler G, Turk R (2004) Modeling the dynamic recrystallization under multi-stage hot deformation. Acta Mater 52(15):4659–4668

    Article  Google Scholar 

  • Lee HW, Im YT (2010) Numerical modeling of dynamic recrystallization during nonisothermal hot compression by cellular automata and finite element analysis. Int J Mech Sci 52(10):1277–1289

    Article  Google Scholar 

  • Lee HW, Kang SH, Lee Y (2014) Prediction of microstructure evolution during hot forging using grain aggregate model for dynamic recrystallization. Int J Precis Eng Manuf 15(6):1055–1062

    Article  Google Scholar 

  • Li G, Jinn JT, Wu WT, Oh SI (2001) Recent development and applications of three-dimensional finite element modeling in bulk forming processes. J Mater Process Technol 113(1–3):40–45

    Article  Google Scholar 

  • Li H, Wu C, Yang H (2013) Crystal plasticity modeling of the dynamic recrystallization of two-phase titanium alloys during isothermal processing. Int J Plast 51:271–291

    Article  Google Scholar 

  • Li X, Duan L, Li J, Wu X (2015) Experimental study and numerical simulation of dynamic recrystallization behavior of a micro-alloyed plastic mold steel. Mater Des A 66:309–320

    Google Scholar 

  • Madison JD, Tikare V, Holm EA (2012) A hybrid simulation methodology for modeling dynamic recrystallization in UO2 LWR nuclear fuels. J Nucl Mater 425(1–3):173–180

    Article  Google Scholar 

  • Manonukul A, Dunne FPE (1999) Initiation of dynamic recrystallization under inhomogeneous stress states in pure copper. Acta Mater 47(17):4339–4354

    Article  Google Scholar 

  • McQueen HJ, Ryan ND (2002) Constitutive analysis in hot working. Mater Sci Eng A 322(1–2):43–63

    Article  Google Scholar 

  • Mecking H, Kocks UF (1981) Kinetics of flow and strain-hardening. Acta Metall 29(11):1865–1875

    Article  Google Scholar 

  • Miura H, Aoyama H, Sakai T (1994) Effect of grain-boundary misorientation on dynamic recrystallization of Cu-Si bicrystals. J Jpn Inst Met 58(3):267–275

    Google Scholar 

  • Miura H, Sakai T, Mogawa R, Gottstein G (2004) Nucleation of dynamic recrystallization at grain boundaries in copper bicrystals. Philos Mag 51(7):671–675

    Google Scholar 

  • Miura H, Sakai T, Andiarwanto S, Jonas JJ (2005) Nucleation of dynamic recrystallization at triple junctions in polycrystalline copper. Philos Mag 85(23):2653–2669

    Article  Google Scholar 

  • Miura H, Sakai T, Mogawa R, Jonas JJ (2007) Nucleation of dynamic recrystallization and variant selection in copper bicrystals. Philos Mag 87(27):4197–4209

    Article  Google Scholar 

  • Moelans N, Blanpain B, Wollants P (2008) An introduction to phase-field modeling of microstructure evolution. Calphad: Comput Coupling Phase Diagrams Thermochem 32(2):268–294

    Article  Google Scholar 

  • Momeni A, Abbasi S, Badri H (2012) Hot deformation behavior and constitutive modeling of VCN200 low alloy steel. Calphad: Comput Coupling Phase Diagrams Thermochem 36(11):5624–5632

    Google Scholar 

  • Montmitonnet P (2006) Hot and cold strip rolling processes. Comput Methods Appl Mech Eng 195(48–49):6604–6625

    Article  MATH  Google Scholar 

  • Oh SI (1982) Finite element analysis of metal forming processes with arbitrarily shaped dies. Int J Mech Sci 24(8):479–493

    Article  MATH  Google Scholar 

  • Oh SI, Wu WT, Tang JP, Vedhanayagam A (1991) Capabilities and applications of FEM code deform: the perspective of the developer. J Mater Process Technol 27(1–3):25–42

    Article  Google Scholar 

  • Ohno M, Tsuchiya S, Matsuura K (2011) Formation conditions of coarse columnar austenite grain structure in peritectic carbon steels by the discontinuous grain growth mechanism. Acta Mater 59(14):5700–5709

    Article  Google Scholar 

  • Peczak P (1995) A Monte Carlo study of influence of deformation temperature on dynamic recrystallization. Acta Metall Mater 43(3):1279–1291

    Article  Google Scholar 

  • Peczak P, Luton MJ (1993) A Monte Carlo study of the influence of dynamic recovery on dynamic recrystallization. Acta Metall Mater 41(1):59–71

    Article  Google Scholar 

  • Qian M, Guo ZX (1993) Cellular automata simulation of microstructural evolution during dynamic recrystallization of an HY-100 steel. Mater Sci Eng A 365(1–2):180–185

    Google Scholar 

  • Qu J, Jin QL, Xu BY (2005) Parameter identification for improved viscoplastic model considering dynamic recrystallization. Int J Plast 21(7):1267–1302

    Article  MATH  Google Scholar 

  • Quan G, Luo G, Liang J, Wu D, Mao A, Liu Q (2015) Modelling for the dynamic recrystallization evolution of Ti-6Al-4V alloy in two-phase temperature range and a wide strain rate range. Comput Mater Sci 97:136–147

    Article  Google Scholar 

  • Roberts W, Ahlblom B (1978) A nucleation criterion for dynamic recrystallization during hot working. Acta Metall 26(5):801–813

    Article  Google Scholar 

  • Rollett AD, Luton MJ, Srolovitz DJ (1992) Microstructural simulation of dynamic recrystallization. Acta Metall Mater 40(1):43–55

    Article  Google Scholar 

  • Sakai T, Jonas JJ (1984) Dynamic recrystallization: mechanical and microstructural considerations. Acta Metall 32(2):189–209

    Article  Google Scholar 

  • Sakai T, Akben MG, Jonas JJ (1983) Dynamic recrystallization during the transient deformation of a vanadium microalloyed steel. Acta Metall 31(4):631–641

    Article  Google Scholar 

  • Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ (2014) Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci 60(1):130–207

    Article  Google Scholar 

  • Singer-Loginova I, Singer HM (2008) The phase field technique for modeling multiphase materials. Rep Prog Phys 71(10):106501

    Google Scholar 

  • Song JL, Dowson AL, Jacobs MH, Brooks J, Beden I (2002) Coupled thermo-mechanical finite-element modelling of hot ring rolling process. J Mater Process Technol 121(2–3):332–340

    Article  Google Scholar 

  • Steinbach I (2009) Phase-field models in materials science. Modell Simul Mater Sci Eng 17(7):073001

    Google Scholar 

  • Steinbach I, Pezzolla F (1999) A generalized field method for multiphase transformations using interface fields. Physica D Nonlinear Phenom 134(4):385–393

    Article  MATH  MathSciNet  Google Scholar 

  • Suwa Y, Saito Y, Onodera H (2007) Phase-field simulation of abnormal grain growth due to inverse pinning. Acta Mater 55(20):6881–6894

    Article  Google Scholar 

  • Svyetlichnyy DS (2010) Modelling of the microstructure: from classical cellular automata approach to the frontal one. Comput Mater Sci 50(1):92–97

    Article  Google Scholar 

  • Takaki T (2014) Phase-field modeling and simulations of dendrite growth. ISIJ Int 54(2):437–444

    Article  Google Scholar 

  • Takaki T, Hirouchi T, Hisakuni Y, Yamanaka A, Tomita Y (2008) Multi-phase-field model to simulate microstructure evolutions during dynamic recrystallization. Mater Trans 49(11):2559–2565

    Article  Google Scholar 

  • Takaki T, Hisakuni Y, Hirouchi T, Yamanaka A, Tomita Y (2009) Multi-phase-field simulations for dynamic recrystallization. Comput Mater Sci 45(4):881–888

    Article  Google Scholar 

  • Takaki T, Yamanaka A, Tomita Y (2011) Multi-phase-field simulations of dynamic recrystallization during transient deformation. ISIJ Int 51(10):1717–1723

    Article  Google Scholar 

  • Wolfram S (1983) Statistical mechanics of cellular automata. Rev Mod Phys 55(3):601–644

    Article  MATH  MathSciNet  Google Scholar 

  • Wusatowska-Sarnek AM, Miura H, Sakai T (2002) Nucleation and microtexture development under dynamic recrystallization of copper. Mater Sci Eng A 323(1–2):177–186

    Article  Google Scholar 

  • Xiao N, Zheng C, Li D, Li Y (2008) A simulation of dynamic recrystallization by coupling a cellular automaton method with a topology deformation technique. Comput Mater Sci 41(3):366–374

    Article  Google Scholar 

  • Yamada K, Ogawa S, Hamauzu S (1991) Two-dimensional thermo-mechanical analysis of flat rolling using rigid-plastic finite element method. ISIJ Int 31(36):566–570

    Article  Google Scholar 

  • Yamanaka A, Takaki T (2014) Multi-phase-field simulation of flow stress and microstructural evolution during deformation-induced ferrite transformation in a Fe-C alloy. ISIJ Int 52(12):2917–2925

    Article  Google Scholar 

  • Yanagimoto J, Karhausen K, Brand AJ, Kopp R (1998) Incremental formulation for the prediction of flow stress and microstructural change in hot forming. Trans ASME J Manuf Sci Eng 120(2):316–322

    Article  Google Scholar 

  • Yanagimoto J, Dupin E, Liu JS, Yanagida A (2014) Numerical analysis for microstructure control in hot forming process. Procedia Eng 81:38–43

    Article  Google Scholar 

  • Yazdipour N, Davies CHJ, Hodgson PD (2008) Microstructural modeling of dynamic recrystallization using irregular cellular automata. Comput Mater Sci 44(2):566–576

    Article  Google Scholar 

  • Yeom JT, Lee CS, Kim JH, Park NK (2005) Finite-element analysis of microstructure evolution in the cogging of an alloy 718 ingot. Mater Sci Eng A 449–451:722–726

    Google Scholar 

  • Yin F, Hua L, Mao H, Han X, Qian D, Zhang R (2014) Microstructural modeling and simulation for GCr15 steel during elevated temperature deformation. Mater Des 55:560–573

    Article  Google Scholar 

  • Yoshimoto C, Takaki T (2014) Multiscale hot-working simulations using multi-phase-field and finite element dynamic recrystallization model. ISIJ Int 54(2):452–459

    Article  Google Scholar 

  • Zheng C, Xiao N, Li D, Li Y (2008) Numerical simulation of dynamic strain-induced austenite-ferrite transformation in a low carbon steel. Comput Mater Sci 44(2):507–514

    Article  Google Scholar 

  • Zheng C, Xiao N, Hao L, Li D, Li Y (2009) Numerical simulation of dynamic strain-induced austenite-ferrite transformation in a low carbon steel. Acta Mater 57(10):2956–2968

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Takaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Takaki, T., Yamanaka, A., Tomita, Y. (2015). Phase-Field Modeling for Dynamic Recrystallization. In: Altenbach, H., Matsuda, T., Okumura, D. (eds) From Creep Damage Mechanics to Homogenization Methods. Advanced Structured Materials, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-19440-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19440-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19439-4

  • Online ISBN: 978-3-319-19440-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics