Skip to main content

Analysis of Inelastic Behavior for High Temperature Materials and Structures

  • Chapter
  • First Online:
Book cover From Creep Damage Mechanics to Homogenization Methods

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 64))

Abstract

This review provides a current status in modeling and analysis of structures for high-temperature applications. Basic features of inelastic behavior of heat resistant alloys are discussed. Typical responses for stationary and varying loading and temperature are presented and classified. Microstructural features and microstructural changes in the course of inelastic deformation at high temperature are discussed. The state of the art on material modeling and structural analysis in the inelastic range at high temperature is resented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F (2008) Strengthening mechanisms in steel for creep and creep rupture. In: Abe F, Kern TU, Viswanathan R (eds) Creep-esistant steels. Woodhead Publishing, Cambridge, pp 279–304

    Google Scholar 

  • Abe F (2009) Analysis of creep rates of tempered martensitic 9 % Cr steel based on microstructure evolution. Mater Sci Eng A 510:64–69

    Google Scholar 

  • Aifantis KE, Weygand D, Motz C, Nikitas N, Zaiser M (2012) Modeling microbending of thin films through discrete dislocation dynamics, continuum dislocation theory, and gradient plasticity. J Mat Res 27:612–618

    Google Scholar 

  • Aktaa J, Petersen C (2009) Challenges in the constitutive modeling of the thermo-mechanical deformation and damage behavior of eurofer 97. Eng Fract Mech 76(10):1474–1484

    Google Scholar 

  • Altenbach H, Eremeyev V (2014) Strain rate tensors and constitutive equations of inelastic micropolar materials. Int J Plast 63:3–17

    Google Scholar 

  • Altenbach H, Naumenko K (1997) Creep bending of thin-walled shells and plates by consideration of finite deflections. Comput Mech 19:490–495

    MATH  Google Scholar 

  • Altenbach H, Naumenko K (2002) Shear correction factors in creep-damage analysis of beams, plates and shells. JSME Int J Series A 45:77–83

    Google Scholar 

  • Altenbach H, Morachkovsky O, Naumenko K, Sychov A (1997) Geometrically nonlinear bending of thin-walled shells and plates under creep-damage conditions. Arch Appl Mech 67:339–352

    MATH  Google Scholar 

  • Altenbach H, Altenbach J, Naumenko K (1998) Ebene Flächentragwerke. Springer, Berlin

    MATH  Google Scholar 

  • Altenbach H, Breslavsky D, Morachkovsky O, Naumenko K (2000a) Cyclic creep damage in thin-walled structures. J Strain Anal Eng Des 35(1):1–11

    Google Scholar 

  • Altenbach H, Kolarow G, Morachkovsky O, Naumenko K (2000b) On the accuracy of creep-damage predictions in thinwalled structures using the finite element method. Comput Mech 25:87–98

    MATH  Google Scholar 

  • Altenbach H, Kushnevsky V, Naumenko K (2001) On the use of solid- and shell-type finite elements in creep-damage predictions of thinwalled structures. Arch Appl Mech 71:164–181

    MATH  Google Scholar 

  • Altenbach H, Huang C, Naumenko K (2002) Creep damage predictions in thin-walled structures by use of isotropic and anisotropic damage models. J Strain Anal Eng Des 37(3):265–275

    Google Scholar 

  • Altenbach H, Naumenko K, Zhilin P (2003) A micro-polar theory for binary media with application to phase-transitional flow of fiber suspensions. Continuum Mech Thermodyn 15:539–570

    MATH  MathSciNet  Google Scholar 

  • Altenbach H, Naumenko K, Pylypenko S, Renner B (2007) Influence of rotary inertia on the fiber dynamics in homogeneous creeping flows. ZAMM J Appl Math Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 87(2):81–93

    MATH  MathSciNet  Google Scholar 

  • Altenbach H, Naumenko K, Gorash Y (2008) Creep analysis for a wide stress range based on stress relaxation experiments. Int J Mod Phys B 22(31n32):5413–5418

    Google Scholar 

  • Altenbach H, Kozhar S, Naumenko K (2013) Modeling creep damage of an aluminum-silicon eutectic alloy. Int J Damage Mech 22(5):683–698

    Google Scholar 

  • Altenbach J, Altenbach H, Naumenko K (2004) Egde effects in moderately thick plates under creep damage conditions. Tech Mech 24(3–4):254–263

    Google Scholar 

  • Arzt E (1998) Size effects in materials due to microstructural and dimensional constraints: a comparative review. Acta Mater 46(16):5611–5626

    Google Scholar 

  • Berger C, Scholz A, Mueller F, Schwienherr M (2008) Creep fatigue behaviour and crack growth of steels. In: Abe F, Kern TU, Viswanathan R (eds) Creep-resistant steels. Woodhead Publishing, Cambridge, pp 446–471

    Google Scholar 

  • Bernhardt EO, Hanemann H (1938) Über den Kriechvorgang bei dynamischer Belastung und den Begriff der dynamischen Kriechfestigkeit. Z für Metallkunde 30(12):401–409

    Google Scholar 

  • Betten J (1976) Plastic anisotropy and Bauschinger-effect—general formulation and comparison with experimental yield curves. Acta Mech 25(1–2):79–94

    Google Scholar 

  • Betten J (2001) Kontinuumsmechanik. Springer, Berlin

    MATH  Google Scholar 

  • Betten J (2005) Creep Mechanics. Springer, Berlin

    Google Scholar 

  • Betten J, El-Magd E, Meydanli SC, Palmen P (1995) Untersuchnung des anisotropen Kriechverhaltens vorgeschädigter Werkstoffe am austenitischen Stahl X8CrNiMoNb 1616. Arch Appl Mech 65:121–132

    Google Scholar 

  • Bielski J, Skrzypek J (1989) Failure modes of elastic-plastic curved tubes under external pressure with in-plane bending. Int J Mech Sci 31:435–458

    Google Scholar 

  • Blum W (2001) Creep of crystalline materials: experimental basis, mechanisms and models. Mater Sci Eng A 319:8–15

    Google Scholar 

  • Blum W (2008) Mechanisms of creep deformation in steel. In: Abe F, Kern TU, Viswanathan R (eds) Creep-resistant steels. Woodhead Publishing, Cambridge, pp 365–402

    Google Scholar 

  • Boyle JT, Spence J (1983) Stress analysis for creep. Butterworth, London

    Google Scholar 

  • Bunch JO, McEvily AJ (1987) On the behavior of ferritic steels subjected to load controlled cycling at elevated temperatures. In: Rie KT (ed) Cycle low fatigue and elasto-plastic behaviour of materials, Springer, Berlin, pp 252–257

    Google Scholar 

  • da C Andrade EN (1910) On the viscous flow of metals, and allied phenomena. Proc R Soc Lond ALXXXIV:1–12

    Google Scholar 

  • Cailletaud G, Forest S, Jeulin D, Feyel F, Galliet I, Mounoury V, Quilici S (2003) Some elements of microstructural mechanics. Comput Mater Sci 27(3):351–374

    Google Scholar 

  • Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive equations. Int J Plast 24:1642–1693

    MATH  Google Scholar 

  • Coble RL (1963) A model for boundary diffusion controlled creep in polycrystalline materials. J Appl Phys 34(6):1679–1682

    Google Scholar 

  • Coffin LF (1954) A study of the effects of cyclic thermal stresses on a ductile metal. Trans ASME 76:931–950

    Google Scholar 

  • Colombo F, Mazza E, Holdsworth SR, Skelton RP (2008) Thermo-mechanical fatigue tests on uniaxial and component-like 1CrMoV rotor steel specimens. Int J Fatigue 30:241–248

    MATH  Google Scholar 

  • Cui L, Wang P (2014) Two lifetime estimation models for steam turbine components under thermomechanical creep-fatigue loading. Int J Fatigue 59:129–136

    Google Scholar 

  • Cui L, Scholz A, von Hartrott P, Schlesinger M (2009) Entwicklung von Modellen zur Lebensdauervorhersage von Kraftwerksbauteilen unter thermisch-mechanischer Kriechermüdungsbeanspruchung. Abschlussbericht, AVIF Vorhaben Nr. 895, FVV, Heft 888, Frankfurt am Main

    Google Scholar 

  • Cui L, Wang P, Hoche H, Scholz A, Berger C (2013) The influence of temperature transients on the lifetime of modern high-chromium rotor steel under service-type loading. Mater Sci Eng A 560:767–780

    Google Scholar 

  • Devulder A, Aubry D, Puel G (2010) Two-time scale fatigue modelling: application to damage. Comput Mech 45(6):637–646

    MATH  Google Scholar 

  • Dyson BF, McLean M (1998) Microstructural evolution and its effects on the creep performance of high temperature alloys. In: Strang A, Cawley J, Greenwood GW (eds) Microstructural stability of creep resistant alloys for high temperature plant applications. Cambridge University Press, Cambridge, pp 371–393

    Google Scholar 

  • Dyson BF, McLean M (2001) Micromechanism-quantification for creep constitutive equations. In: Murakami S, Ohno N (eds) IUTAM symposium on creep in structures. Kluwer, Dordrecht, pp 3–16

    Google Scholar 

  • El-Magd E, Nicolini G (1999) Creep behaviour and microstructure of dispersion-strengthened pm-aluminium materials at elevated temperatures. In: Mughrabi H, Gottstein G, Mecking H, Riedel H, Tobolski J (eds) Microstructure and mechanical properties of metallic high-temperature materials: research Report/DFG. Wiley-VCH, Weinheim, pp 445–464

    Google Scholar 

  • El-Magd E, Betten J, Palmen P (1996) Auswirkung der Schädigungsanisotropie auf die Lebensdauer von Stählen bei Zeitstandbeanspruchung. Mat-wiss u Werkstofftechn 27:239–245

    Google Scholar 

  • Eringen AC (2001) Microcontinuum field theories, vol II: Fluent Media. Springer, New York

    Google Scholar 

  • Estrin Y (1996) Dislocation-density-related constitutive modelling. In: Krausz AS, Krausz K (eds) Unified constitutive laws of plastic deformation. Academic Press, San Diego, pp 69–104

    Google Scholar 

  • Faruque MO, Zaman M, Hossain MI (1996) Creep constitutive modelling of an aluminium alloy under multiaxial and cyclic loading. Int J of Plast 12(6):761–780

    MATH  Google Scholar 

  • Fish J, Bailakanavar M, Powers L, Cook T (2012) Multiscale fatigue life prediction model for heterogeneous materials. Int J Numer Meth Eng 91(10):1087–1104

    MathSciNet  Google Scholar 

  • Fleck NA, Hutchinson JW (1997) Strain gradient plasticity. Adv Appl Mech 33:295–361

    Google Scholar 

  • Forest S (2009) Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J Eng Mech 135(3):117–131

    Google Scholar 

  • Forest S, Cailletaud G, Sievert R (1997) A cosserat theory for elastoviscoplastic single crystals at finite deformation. Arch Mech 49:705–736

    MATH  MathSciNet  Google Scholar 

  • Fournier B, Sauzay M, Caös C, Noblecourt M, Mottot M, Bougault A, Rabeau V, Pineau A (2008) Creep-fatigue-oxidation interactions in a 9Cr-1Mo martensitic steel. Part II: effect of compressive holding period on fatigue lifetime. Int J Fatigue 30(4):663–676

    Google Scholar 

  • Fournier B, Dalle F, Sauzay M, Longour J, Salvi M, Caës C, Tournié I, Giroux PF, Kim SH (2011) Comparison of various 9–12 % Cr steels under fatigue and creep-fatigue loadings at high temperature. Mater Sci Eng A 528(22):6934–6945

    Google Scholar 

  • François D, Pineau A, Zaoui A (2012) Mechanical behaviour of materials, mechanical behaviour of materials, Micro- and macroscopic constitutive behaviour, vol 1. Springer, Berlin

    Google Scholar 

  • Frost HJ, Ashby MF (1982) Deformation-mechanism maps. Pergamon, Oxford

    Google Scholar 

  • Gao H, Huang Y, Nix WD, Hutchinson JW (1999) Mechanism-based strain gradient plasticity-I. Theory. J Mech Phys Solids 47(6):1239–1263

    MATH  MathSciNet  Google Scholar 

  • Gariboldi E, Casaro F (2007) Intermediate temperature creep behaviour of a forged Al–Cu–Mg–Si–Mn alloy. Mater Sci Eng A 462(1):384–388

    Google Scholar 

  • van der Giessen E, Tvergaard V (1995) Development of final creep failure in polycrystalline aggregates. Acta Metall Mater 42:959–973

    Google Scholar 

  • van der Giessen E, van der Burg MWD, Needleman A, Tvergaard V (1995) Void growth due to creep and grain boundary diffusion at high triaxialities. J Mech Phys Solids 43:123–165

    MATH  MathSciNet  Google Scholar 

  • Gooch DJ (2003) Remnant creep life prediction in ferritic materials. In: Saxena A (ed) Comprehensive structural integrity, Creep and high-temperature failure, vol 5. Elsevier, Amsterdam, pp 309–359

    Google Scholar 

  • Gorash Y, Altenbach H, Lvov G (2012) Modelling of high-temperature inelastic behaviour of the austenitic steel AISI type 316 using a continuum damage mechanics approach. J Strain Anal Eng Des 47(4):229–243

    Google Scholar 

  • Hald J (1998) Service performance of a 12crmov steam pipe steel. In: Strang A, Cawley J, Greenwood GW (eds) Microstructural stability of creep resistant alloys for high temperature plant applications. Cambridge University Press, Cambridge, pp 173–184

    Google Scholar 

  • Hall EO (1951) The deformation and ageing of mild steel: iii discussion of results. Proc Phys Soc Sect B 64(9):747

    Google Scholar 

  • Haupt P (2002) Continuum mechanics and theory of materials. Springer, Berlin

    MATH  Google Scholar 

  • Hayhurst DR (1994) The use of continuum damage mechanics in creep analysis for design. J Strain Anal Eng Des 25(3):233–241

    Google Scholar 

  • Hayhurst DR, Leckie FA (1990) Yielding, damage and failure of anisotropic solids. In: Boehler JP (ed) High temperature creep continuum damage in metals. Mechanical Engineering Publ, London, pp 445–464

    Google Scholar 

  • Hayhurst DR, Wong MT, Vakili-Tahami F (2002) The use of CDM analysis techniques in high temperature creep failure of welded structures. JSME Int J Ser A 45:90–97

    Google Scholar 

  • Herring C (1950) Diffusional viscosity of a polycrystalline solid. J Appl Phys 21(5):437–445

    Google Scholar 

  • Holdsworth S, Mazza E, Binda L, Ripamonti L (2007) Development of thermal fatigue damage in 1CrMoV rotor steel. Nucl Eng Des 237:2292–2301

    Google Scholar 

  • Hutchinson JW (1976) Bounds and self-consistent estimates for creep of polycrystalline materials. Proc Roy Soc London Math Phys Sci 348(1652):101–127

    MATH  Google Scholar 

  • Hyde T, Sun W, Hyde C (2013) Applied creep mechanics. McGraw-Hill Education, New York

    Google Scholar 

  • Hyde TH, Xia L, Becker AA (1996) Prediction of creep failure in aeroengine materials under multi-axial stress states. Int J Mech Sci 38(4):385–403

    Google Scholar 

  • Hyde TH, Sun W, Becker AA, Williams JA (1997) Creep continuum damage constitutive equations for the base, weld and heat-affected zone materials of a service-aged 1/2Cr1/2Mo1/4V:2 1/4Cr1Mo multipass weld at 640 \(^{\circ }\)C. J Strain Anal Eng Des 32(4):273–285

    Google Scholar 

  • Hyde TH, Sun W, Williams JA (1999) Creep behaviour of parent, weld and HAZ materials of new, service aged and repaired 1/2Cr1/2Mo1/4V: 21/4Cr1Mo pipe welds at 640 \(^{\circ }\)C. Mater High Temp 16(3):117–129

    Google Scholar 

  • Hyde TH, Yaghi A, Becker AA, Earl PG (2002) Finite element creep continuum damage mechanics analysis of pressurised pipe bends with ovality. JSME Int J Ser A 45(1):84–89

    Google Scholar 

  • Hyde TH, Sun W, Agyakwa PA, Shipeay PH, Williams JA (2003) Anisotropic creep and fracture behaviour of a 9CrMoNbV weld metal at 650 \(^\circ \)C. In: Skrzypek JJ, Ganczarski AW (eds) Anisotropic Behav Damaged Mater. Springer, Berlin, pp 295–316

    Google Scholar 

  • Illschner B (1973) Hochtemperatur-Plastizität. Springer, Berlin

    Google Scholar 

  • Inoue T (1988) Inelastic constitutive models under plasticity-creep interaction condition—theories and evaluations. JSME Int J Ser I 31(4):653–663

    Google Scholar 

  • Kassner ME, Pérez-Prado MT (2004) Fundamentals of creep in melals and alloys. Elsevier, Amsterdam

    Google Scholar 

  • Kawai M (1989) Creep and plasticity of austenitic stainless steel under multiaxial non-proportional loadings at elevated temperatures. In: Hui D, Kozik TJ (eds) Visco-plastic behavior of new materials, ASME, PVP-Vol 184, New York, pp 85–93

    Google Scholar 

  • Keralavarma SM, Cagin T, Arsenlis A, Benzerga AA (2012) Power-law creep from discrete dislocation dynamics. Physical Review Letters 109(26):265,504

    Google Scholar 

  • Kimura K, Kushima H, Sawada K (2009) Long-term creep deformation properties of 9Cr-1Mo steel. Mater Sci Eng A510–A511:58–63

    Google Scholar 

  • Kimura M, Yamaguchi K, Hayakawa M, Kobayashi K, Kanazawa K (2006) Microstructures of creep-fatigued 9–12 % Cr ferritic heat-resisting steels. Int J Fatigue 28(3):300–308

    Google Scholar 

  • Kloc L, Sklenička V (1997) Transition from power-law to viscous creep beahviour of P-91 type heat-resistant steel. Mater Sci Eng A234–A236:962–965

    Google Scholar 

  • Kloc L, Sklenička V (2004) Confirmation of low stress creep regime in 9 % chromium steel by stress change creep experiments. Mater Sci Eng A387–A389:633–638

    Google Scholar 

  • Kloc L, Sklenička V, Ventruba J (2001) Comparison of low creep properties of ferritic and austenitic creep resistant steels. Mater Sci Eng A319–A321:774–778

    Google Scholar 

  • Kostenko Y, Almstedt H, Naumenko K, Linn S, Scholz A (2013) Robust methods for creep fatigue analysis of power plant components under cyclic transient thermal loading. In: ASME turbo Expo 2013: turbine technical conference and exposition, American Society of Mechanical Engineers, pp V05BT25A040–V05BT25A040

    Google Scholar 

  • Kowalewski ZL (1995) Experimental evaluation of the influence of the stress state type on the creep characteristics of copper at 523 K. Arch Mech 47(1):13–26

    Google Scholar 

  • Kowalewski ZL (2001) Assessment of the multiaxial creep data based on the isochronous creep surface concept. In: Murakami S, Ohno N (eds) IUTAM symposium on creep in structures. Kluwer, Dordrecht, pp 401–418

    Google Scholar 

  • Kowalewski ZL, Hayhurst DR, Dyson BF (1994) Mechanisms-based creep constitutive equations for an aluminium alloy. J Strain Anal Eng Des 29(4):309–316

    Google Scholar 

  • Kraft O, Gruber PA, Mönig R, Weygand D (2010) Plasticity in confined dimensions. Annu Rev Mater Res 40:293–317

    Google Scholar 

  • Kraus H (1980) Creep Anal. Wiley, New York

    Google Scholar 

  • Krausz AS, Krausz K (1996) Unified constitutive laws of plastic deformation. Academic Press, San Diego

    Google Scholar 

  • Krempl E (1999) Creep-plasticity interaction. In: Altenbach H, Skrzypek J (eds) Creep and damage in materials and structures, Springer, New York, pp 285–348, CISM Lecture Notes No. 399

    Google Scholar 

  • Krieg R (1999) Reactor pressure vessel under severe accident loading. Final Report of EU-Project Contract FI4S-CT95-0002. Technical report, Forschungszentrum Karlsruhe, Karlsruhe

    Google Scholar 

  • Kubin L (2013) Dislocations, mesoscale simulations and plastic flow. Oxford Series on Materials Modelling, OUP Oxford

    Google Scholar 

  • Laengler F, Mao T, Aleksanoglu H, Scholz A (2010) Phenomenological lifetime assessment for turbine housings of turbochargers. In: Proceedings of 9th international conference on multiaxial fatigue and fracture, 7th–9th June, 2010, Parma, Italy, (CD-ROM), Parma, pp 283–291

    Google Scholar 

  • Langdon TG (2006) Grain boundary sliding revisited: developments in sliding over four decades. J Mater Sci 41:597–609

    Google Scholar 

  • Längler F, Naumenko K, Altenbach H, Ievdokymov M (2014) A constitutive model for inelastic behavior of casting materials under thermo-mechanical loading. J Strain Anal Eng Des 49:421–428

    Google Scholar 

  • Lazan BJ (1949) Dynamic creep and rupture properties of temperature-resistant materials under tensile fatigue stress. Proc ASTM 49:757–787

    Google Scholar 

  • Le May I, da Silveria TL, Cheung-Mak SKP (1994) Uncertainties in the evaluations of high temperature damage in power stations and petrochemical plant. Int J of Press Vessels Pip 59:335–343

    Google Scholar 

  • Lemaitre J, Desmorat R (2005) Engineering damage mechanics: ductile, creep, fatigue and brittle failures. Springer, Berlin

    Google Scholar 

  • Lepinoux J, Kubin L (1987) The dynamic organization of dislocation structures: a simulation. Scr Metall 21(6):833–838

    Google Scholar 

  • Libai A, Simmonds JG (1998) The nonlinear theory of elastic shells. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Lucas GE, Pelloux RMN (1981) Texture and stress state dependent creep in Zircaloy-2. Metall Trans A 12A:1321–1331

    Google Scholar 

  • Malinin NN (1981) Raschet na polzuchest’ konstrukcionnykh elementov (Creep calculations of structural elements, in Russ.). Mashinostroenie, Moskva

    Google Scholar 

  • Manson SS (1953) Behavior of materials under conditions of thermal stress. NACA TN 2933

    Google Scholar 

  • Maugin GA (1992) The thermomechanics of plasticity and fracture. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Maugin GA (1993) Material inhomogeneities in elasticity. Chapman Hall, London

    MATH  Google Scholar 

  • Maugin GA (2011) Configurational forces: thermomechanics, physics, mathematics, and numerics. CRC Pressl, Boca Raton

    Google Scholar 

  • Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199(45–48):2765–2778

    MATH  MathSciNet  Google Scholar 

  • Miller AK (ed) (1987) Unified constitutive equations for creep and plasticity. Elsevier, London

    Google Scholar 

  • Miner M (1945) Cumulative damage in fatigue. J Appl Mech 12:159–164

    Google Scholar 

  • Monkman FC, Grant NJ (1956) An empirical relationship between rupture life and minimum creep rate in creep-rupture tests. In: Proc ASTM, vol 56, pp 593–620

    Google Scholar 

  • Mughrabi H (2009) Cyclic slip irreversibilities and the evolution of fatigue damage. Metall Mater Trans B 40(4):431–453

    Google Scholar 

  • Murakami S, Sanomura Y (1985) Creep and creep damage of copper under multiaxial states of stress. In: Sawczuk A, Bianchi B (eds) Plasticity today—modelling, methods and applications. Elsevier, London, pp 535–551

    Google Scholar 

  • Nabarro FRN (1948) Report of a conference on the strength of solids. The Physical Society, London 75

    Google Scholar 

  • Nabarro FRN (2002) Creep at very low rates. Metall Mater Trans A 33(2):213–218

    Google Scholar 

  • Nabarro FRN, de Villiers HL (1995) The physics of creep, creep and creep-resistant alloys. Taylor & Francis, London

    Google Scholar 

  • Nagode M, Längler F, Hack M (2011) Damage operator based lifetime calculation under thermo-mechanical fatigue for application on Ni-resist D-5S turbine housing of turbocharger. Eng Fail Anal 18(6):1565–1575

    Google Scholar 

  • Naumenko K, Altenbach H (2007) Modelling of creep for structural analysis. Springer, Berlin

    Google Scholar 

  • Naumenko K, Gariboldi E (2014) A phase mixture model for anisotropic creep of forged Al-Cu-Mg-Si alloy. Mater Sci Eng A 618:368–376

    Google Scholar 

  • Naumenko K, Kostenko Y (2009) Structural analysis of a power plant component using a stress-range-dependent creep-damage constitutive model. Mater Sci Eng A510–A511:169–174

    Google Scholar 

  • Naumenko K, Altenbach H, Gorash Y (2009) Creep analysis with a stress range dependent constitutive model. Arch Appl Mech 79:619–630

    MATH  Google Scholar 

  • Naumenko K, Altenbach H, Kutschke A (2011a) A combined model for hardening, softening and damage processes in advanced heat resistant steels at elevated temperature. Int J Damage Mech 20:578–597

    Google Scholar 

  • Naumenko K, Kutschke A, Kostenko Y, Rudolf T (2011b) Multi-axial thermo-mechanical analysis of power plant components from 9–12 % Cr steels at high temperature. Eng Fract Mech 78:1657–1668

    Google Scholar 

  • Nikitenko AF (1984) Eksperimental’noe obosnovanie gipotezy suschestvovaniya poverkhnosti polzuchesti v usloviyakh slozhnogo nagruzheniya, (experimental justification of the hypothsis on existence of the creep surface under complex loading conditions, in russ.). Probl Prochn 8:3–8

    Google Scholar 

  • Niu L, Kobayashi M, Takaku H (2002) Creep rupture properties of an austenitic steel with high ductility under multi-axial stresses. ISIJ Int 42:1156–1181

    Google Scholar 

  • Nørbygaard T (2002) Studies of grain boundaries in materials subjected to diffusional creep. Ph.D. thesis, Risø National Laboratory, Roskilde

    Google Scholar 

  • Odqvist FKG (1974) Mathematical theory of creep and creep rupture. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Odqvist FKG, Hult J (1962) Kriechfestigkeit metallischer Werkstoffe. Springer, Berlin

    Google Scholar 

  • Ohno N (1998) Constitutive modeling of cyclic plasticity with emphasis on ratchetting. Int J Mech Sci 40(2):251–261

    MATH  Google Scholar 

  • Ohno N, Takeuchi T (1994) Anisotropy in multiaxial creep of nickel-based single-crystal superalloy CMSX-2 (experiments and identification of active slip systems). JSME Int J Ser A 37:129–137

    Google Scholar 

  • Ohno N, Kawabata M, Naganuma J (1990) Aging effects on monotonic, stress-paused, and alternating creep of type 304 stainless steel. Int J of Plast 6:315–327

    Google Scholar 

  • Ohno N, Abdel-Karim M, Kobayashi M, Igari T (1998) Ratchetting characteristics of 316FR steel at high temperature, part I: strain-controlled ratchetting experiments and simulations. Int J Plast 14(4):355–372

    MATH  Google Scholar 

  • Onck PR, Nguyen BN, Van der Giessen E (2000) Microstructural modelling of creep fracture in polycrystalline materials. In: Murakami S, Ohno N (eds) Creep in structures. Kluwer Academic Publishers, Dordrecht, pp 51–64

    Google Scholar 

  • Oytana C, Delobelle P, Mermet A (1982) Constitutive equations study in biaxial stress experimants. Trans ASME J Eng Mat Techn 104(3):1–11

    Google Scholar 

  • Ozhoga-Maslovskaja O (2014) Micro scale modeling grain boundary damage under creep conditions. Ph.D. thesis, Otto von Guericke University Magdeburg, Magdeburg

    Google Scholar 

  • Ozhoga-Maslovskaja O, Naumenko K, Altenbach H, Prygorniev O (2015) Micromechanical simulation of grain boundary cavitation in copper considering non-proportional loading. Comput Mater Sci 96(Part A):178–184

    Google Scholar 

  • Palmgren A (1924) Die Lebensdauer von Kugellagern. Z Ver Dtsch Ing 68(14):339–341

    Google Scholar 

  • Penkalla HJ, Schubert F, Nickel H (1988) Torsional creep of alloy 617 tubes at elevated temperature. In: Reichman S, Duhl DN, Maurer G, Antolovich S, Lund C (eds) Superalloys 1988, the metallurgical society, pp 643–652

    Google Scholar 

  • Penny RK, Mariott DL (1995) Design for creep. Chapman & Hall, London

    Google Scholar 

  • Perrin IJ, Hayhurst DR (1994) Creep constitutive equations for a 0.5 Cr-0.5 Mo-0.25 V ferritic steel in the temperature range 600–675 \(^\circ \)C. J Strain Anal Eng Des 31(4):299–314

    Google Scholar 

  • Petch NJ (1953) The cleavage strength of polycrystals. J Iron Steel Inst 174:25–28

    Google Scholar 

  • Pintschovius L, Gering E, Munz D, Fett T, Soubeyroux JL (1989) Determination of non-symmetric secondary creep behaviour of ceramics by residual stress measurements using neutron diffractometry. J Mater Sci Lett 8(7):811–813

    Google Scholar 

  • Podgorny AN, Bortovoj VV, Gontarovsky PP, Kolomak VD, Lvov GI, Matyukhin YJ, Morachkovsky OK (1984) Polzuchest’ elementov mashinostroitel’nykh konstrykcij (Creep of mashinery structural members, in Russ.). Naukova dumka, Kiev

    Google Scholar 

  • Polák J (2003) 4.01—Cyclic deformation, crack initiation, and low-cycle fatigue. In: Karihaloo I, Milne R, Ritchie B (eds) Comprehensive structural integrity. Pergamon, Oxford, pp 1–39

    Google Scholar 

  • Polmear IJ (2004) Aluminium alloys-a century of age hardening. Mater Forum 28:1–14

    Google Scholar 

  • Prygorniev O, Naumenko K (2013) Surface layer effects in polycrystalline structures under cyclic viscoplasticity. In: CanCNSM 2013, 4th canadian conference on nonlinear solid mechanics, Montreal, Canada 2013.07.23-26, published on CD-ROM, 6 pp

    Google Scholar 

  • Qin Y, Götz G, Blum W (2003) Subgrain structure during annealing and creep of the cast martensitic Cr-steel G-X12CrMoWVNbN 10-1-1. Mater Sci Eng A 341(1):211–215

    Google Scholar 

  • Rabotnov YN (1969) Creep problems in structural members. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Raj SV, Iskovitz IS, Freed AD (1996) Modeling the role of dislocation substructure during class M and exponential creep. In: Krausz AS, Krausz K (eds) Unified constitutive laws of plastic deformation. Academic Press, San Diego, pp 343–439

    Google Scholar 

  • Rice JR (1971) Inelastic constitutive relations for solids: an internal-variable theory and its application to metal plasticity. J Mech Phys Solids 19(6):433–455

    MATH  Google Scholar 

  • Rieth M, Falkenstein A, Graf P, Heger S, Jäntsch U, Klimiankou M, Materna-Morris E, Zimmermann H (2004) Creep of the austenitic steel AISI 316 L(N). Experiments and models. Technical report, Forschungszentrum Karlsruhe, FZKA 7065, Karlsruhe

    Google Scholar 

  • Robinson DN, Binienda WK, Ruggles MB (2003a) Creep of polymer matrix composites. I: Norton/Bailey Creep Law for transverse isotropy. Trans ASCE J Eng Mech 129(3):310–317

    Google Scholar 

  • Robinson DN, Binienda WK, Ruggles MB (2003b) Creep of polymer matrix composites. II: Monkman-Grant failure relationship for transverse isotropy. Trans ASCE J Eng Mech 129(3):318–323

    Google Scholar 

  • Robinson E (1952) Effect of temperature variation on the long-time rupture strength of steels. Trans ASME 74(5):777–781

    Google Scholar 

  • Roesler J, Harders H, Baeker M (2007) Mechanical behaviour of engineering materials: metals, Ceramics, Polymers, and Composites. Springer, Berlin

    Google Scholar 

  • Roters F, Eisenlohr P, Bieler T, Raabe D (2011) Crystal plasticity finite element methods: in materials science and engineering. Wiley, New York

    Google Scholar 

  • Röttger D (1997) Untersuchungen zum Wechselverformungs- und Zeitstandverhalten der Stähle X20CrMoV121 und X10CrMoVNb91. Dissertation, Universität GH Essen, Fortschr.-Ber. VDI Reihe 5, Nr. 507, Düsseldorf

    Google Scholar 

  • Sakane M, Hosokawa T (2001) Biaxial and triaxial creep testing of type 304 stainless steel at 923 k. In: Murakami S, Ohno N (eds) IUTAM symposium on creep in structures. Kluwer, Dordrecht, pp 411–418

    Google Scholar 

  • Sakane M, Tokura H (2002) Experimental study of biaxial creep damage for type 304 stainless steel. Int J Damage Mech 11:247–262

    Google Scholar 

  • Samir A, Simon A, Scholz A, Berger C (2005) Deformation and life assessment of high temperature materials under creep fatigue loading. Materialwiss Werkstofftech 36:722–730

    Google Scholar 

  • Schmitt R, Müller R, Kuhn C, Urbassek H (2013) A phase field approach for multivariant martensitic transformations of stable and metastable phases. Arch Appl Mech 83:849–859

    MATH  Google Scholar 

  • Segle P, Tu ST, Storesund J, Samuelson LA (1996) Some issues in life assessment of longitudinal seam welds based on creep tests with cross-weld specimens. Int J Press Vessels Pip 66:199–222

    Google Scholar 

  • Shibli IA (2002) Performance of p91 thick section welds under steady and cyclic loading conditions: power plant and research experience. OMMI 1(3). http://www.ommi.co.uk

  • Simon A (2007) Zur Berechnung betriebsnah belasteter Hochtemperaturstähle mit einem konstitutiven Werkstoffmodell. Dissertation, Technische Universität Darmstadt, Berichte aus der Werkstofftechnik, Band 4/2007, Aachen

    Google Scholar 

  • Skelton RP (2003) 5.02—Creep-fatigue interactions (Crack Initiation). In: Karihaloo I, Milne R, Ritchie B (eds) Comprehensive structural integrity. Pergamon, Oxford, pp 25–112

    Google Scholar 

  • Skrzypek J, Ganczarski A (1998) Modelling of material damage and failure of structures. Foundation of engineering mechanics. Springer, Berlin

    Google Scholar 

  • Skrzypek JJ (1993) Plasticity and creep. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Sosnin OV (1974) Energeticheskii variant teorii polzuchesti i dlitel’noi prochnosti. polzuchest’ i razrushenie neuprochnyayushikhsya materialov (energetic variant of the creep and long-term strength theories. creep and fracture of nonhardening materials, in russ.). Probl Prochn 5:45–49

    Google Scholar 

  • Sosnin OV, Gorev BV, Nikitenko AF (1986) Energeticheskii variant teorii polzuchesti (Energetic variant of the creep theory, in Russ.). Institut Gidrodinamiki, Novosibirsk

    Google Scholar 

  • Stouffer DC, Dame LT (1996) Inelastic deformation of metals. Wiley, New York

    Google Scholar 

  • Straub S (1995) Verformungsverhalten und Mikrostruktur warmfester martensitischer 12 %-Chromstähle. Dissertation, Universität Erlangen-Nürnberg, Fortschr.-Ber. VDI Reihe 5, Nr. 405, Düsseldorf

    Google Scholar 

  • Taira S (1962) Lifetime of structures subjected to varying load and temperature. In: Hoff NJ (ed) Creep in structures. Springer, Berlin, pp 96–119

    Google Scholar 

  • Taira S, Koterazawa R (1962) Dynamic creep and fatigue of an 18-8-Mo-Nb Steel. Bull JSME 5(17):15–20

    Google Scholar 

  • Taira S, Ohtani R (1986) Teorija vysokotemperaturnoj prochnosti materialov (Theory of high-temperature strength of materials, in Russ.). Metallurgija, Moscow

    Google Scholar 

  • Trampczynski WA, Hayhurst DR, Leckie FA (1981) Creep rupture of copper and aluminium under non-proportional loading. J Mech Phys Solids 29:353–374

    Google Scholar 

  • Trivaudey F, Delobelle P (1993) Experimental study and modelization of creep damage under multi-axial loadings at high temperature. In: Wilshire B, Evans RW (eds) Creep and fracture of engineering materials and structures. Institute of Materials, London, pp 137–147

    Google Scholar 

  • Tvergaard V (1990) Material failure by void growth to coalescence. Adv Appl Mech 27:83–51

    MATH  Google Scholar 

  • Viswanathan R (1989) Damage mechanisms and life assessment of high temperature components. ASM international

    Google Scholar 

  • Wang P, Cui L, Scholz A, Linn S, Oechsner M (2014) Multiaxial thermomechanical creep-fatigue analysis of heat-resistant steels with varying chromium contents. Int J Fatigue 67:220–227

    Google Scholar 

  • Wiese S (2010) Verformung und Schädigung von Werkstoffen der Aufbau- und Verbindungstechnik: das Verhalten im Mikrobereich. Springer, Berlin

    Google Scholar 

  • Wiese S, Roellig M, Mueller M, Wolter KJ (2008) The effect of downscaling the dimensions of solder interconnects on their creep properties. Microelectron Reliab 48(6):843–850

    Google Scholar 

  • Winstone MR (1998) Microstructure and alloy developments in nickel-based superalloys. In: Strang A, Cawley J, Greenwood GW (eds) Microstructural stability of creep resistant alloys for high temperature plant applications. Cambridge University Press, Cambridge, pp 27–47

    Google Scholar 

  • Yagi K, Merckling G, Kern TU, Irie H, Warlimont H (2004) Creep properties of heat resistant steels and superalloys. Landolt-Börnstein—Group VIII advanced materials and technologies: numerical data and functional relationships in science and technology. Springer, Berlin

    Google Scholar 

  • Yaguchi M, Takahashi Y (2005) Ratchetting of viscoplastic material with cyclic softening, part 1: experiments on modified 9Cr–1Mo steel. Int J Plast 21(1):43–65

    MATH  Google Scholar 

  • Zhang S, Harada M, Ozaki K, Sakane M (2007) Multiaxial creep-fatigue life using cruciform specimen. Int J Fatigue 29(5):852–859

    Google Scholar 

  • Zolochevskij AA (1988) Kriechen von Konstruktionselementen aus Materialien mit von der Belastung abhängigen Charakteristiken. Tech Mech 9:177–184

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Naumenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Naumenko, K., Altenbach, H. (2015). Analysis of Inelastic Behavior for High Temperature Materials and Structures. In: Altenbach, H., Matsuda, T., Okumura, D. (eds) From Creep Damage Mechanics to Homogenization Methods. Advanced Structured Materials, vol 64. Springer, Cham. https://doi.org/10.1007/978-3-319-19440-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19440-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19439-4

  • Online ISBN: 978-3-319-19440-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics