Skip to main content

Animal Models of Ocular Tumors

  • Chapter
  • First Online:
Animal Models of Ophthalmic Diseases

Abstract

Ocular oncology includes many rare malignancies, for which clinical trials are often logistically very difficult to undertake. Consequently, in order to test new drugs for ocular tumors, cell lines are often resorted to, and in vivo testing is often only possible in animal models. Many different animal models exist for ocular neoplasms, and these comprise mice, rats, chick embryos, zebrafish, and Drosophila animal models. They may also entail genetic modifications, as often seen in retinoblastoma studies, or use human cell lines or patient-derived xenografts (PDXs). Herein, the most important animal models for conjunctival and uveal melanoma, vitreoretinal lymphoma, and retinoblastoma are discussed, based on recent reviews in “Ocular Oncology and Pathology.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts I, Leuraud P, Blais J, Pouliquen AL, Maillard P, Houdayer C, Couturier J, Sastre-Garau X, Grierson D, Doz F, Poupon MF (2010) In vivo efficacy of photodynamic therapy in three new xenograft models of human retinoblastoma. Photodiagnosis Photodyn Ther 7(4):275–283. doi:10.1016/j.pdpdt.2010.09.003

    Article  CAS  PubMed  Google Scholar 

  • Al-Ubaidi MR, Font RL, Quiambao AB, Keener MJ, Liou GI, Overbeek PA, Baehr W (1992) Bilateral retinal and brain tumors in transgenic mice expressing simian virus 40 large T antigen under control of the human interphotoreceptor retinoid-binding protein promoter. J Cell Biol 119(6):1681–1687

    Article  CAS  PubMed  Google Scholar 

  • Amirouchene-Angelozzi N, Nemati F, Gentien D, Nicolas A, Dumont A, Carita G, Camonis J, Desjardins L, Cassoux N, Piperno-Neumann S, Mariani P, Sastre X, Decaudin D, Roman-Roman S (2014) Establishment of novel cell lines recapitulating the genetic landscape of uveal melanoma and preclinical validation of mTOR as a therapeutic target. Mol Oncol 8(8):1508–1520. doi:10.1016/j.molonc.2014.06.004

    Article  CAS  PubMed  Google Scholar 

  • Aronow ME, Shen D, Hochman J, Chan CC (2015) Intraocular lymphoma models. Ocular Oncol Pathol 1:214–222. doi:10.1159/000370158

    Article  Google Scholar 

  • Assaf N, Hasson T, Hoch-Marchaim H, Pe’er J, Gnessin H, Deckert-Schluter M, Wiestler OD, Hochman J (1997) An experimental model for infiltration of malignant lymphoma to the eye and brain. Virchows Arch 431(6):459–467

    Article  CAS  PubMed  Google Scholar 

  • Bang S, Nagata S, Onda M, Kreitman RJ, Pastan I (2005) HA22 (R490A) is a recombinant immunotoxin with increased antitumor activity without an increase in animal toxicity. Clin Cancer Res 11(4):1545–1550. doi:10.1158/1078-0432.CCR-04-1939

    Article  CAS  PubMed  Google Scholar 

  • Ben Abdelwahed R, Donnou S, Ouakrim H, Crozet L, Cosette J, Jacquet A, Tourais I, Fournes B, Gillard Bocquet M, Miloudi A, Touitou V, Daussy C, Naud MC, Fridman WH, Sautes-Fridman C, Urbain R, Fisson S (2013) Preclinical study of Ublituximab, a glycoengineered anti-human CD20 antibody, in murine models of primary cerebral and intraocular B-cell lymphomas. Invest Ophthalmol Vis Sci 54(5):3657–3665. doi:10.1167/iovs.12-10316

    Article  PubMed  Google Scholar 

  • Benedict WF, Dawson JA, Banerjee A, Murphree AL (1980) The nude mouse model for human retinoblastoma: a system for evaluation of retinoblastoma therapy. Med Pediatr Oncol 8(4):391–395

    Article  CAS  PubMed  Google Scholar 

  • Bennett D, Lyulcheva E, Cobbe N (2015) Drosophila as a potential model for ocular tumors. Ocular Oncol Pathol 1:190–199.

    Article  Google Scholar 

  • Berube M, Deschambeault A, Boucher M, Germain L, Petitclerc E, Guerin SL (2005) MMP-2 expression in uveal melanoma: differential activation status dictated by the cellular environment. Mol Vis 11:1101–1111

    CAS  PubMed  Google Scholar 

  • Bibby MC (2004) Orthotopic models of cancer for preclinical drug evaluation: advantages and disadvantages. Eur J Cancer 40(6):852–857. doi:10.1016/j.ejca.2003.11.021

    Article  CAS  PubMed  Google Scholar 

  • Blanco G, Saornil AM, Domingo E, Diebold Y, Lopez R, Rabano G, Tutor CJ (2000) Uveal melanoma model with metastasis in rabbits: effects of different doses of cyclosporine A. Curr Eye Res 21(3):740–747

    Article  CAS  PubMed  Google Scholar 

  • Blanco PL, Marshall JC, Antecka E, Callejo SA, Souza Filho JP, Saraiva V, Burnier MN, Jr. (2005) Characterization of ocular and metastatic uveal melanoma in an animal model. Invest Ophthalmol Vis Sci 46(12):4376–4382. doi:10.1167/iovs.04-1103

    Article  PubMed  Google Scholar 

  • Bomirski A, Slominski A, Bigda J (1988) The natural history of a family of transplantable melanomas in hamsters. Cancer Metastasis Rev 7(2):95–118

    Article  CAS  PubMed  Google Scholar 

  • Braun RD, Vistisen KS (2012) Modeling human choroidal melanoma xenograft growth in immunocompromised rodents to assess treatment efficacy. Invest Ophthalmol Vis Sci 53(6):2693–2701. doi:10.1167/iovs.11-9265

    Article  PubMed Central  PubMed  Google Scholar 

  • Braun RD, Abbas A, Bukhari SO, Wilson W, 3rd (2002) Hemodynamic parameters in blood vessels in choroidal melanoma xenografts and rat choroid. Invest Ophthalmol Vis Sci 43(9):3045–3052

    Google Scholar 

  • Bronkhorst IH, Ly LV, Jordanova ES, Vrolijk J, Versluis M, Luyten GP, Jager MJ (2011) Detection of M2-macrophages in uveal melanoma and relation with survival. Invest Ophthalmol Vis Sci 52(2):643–650. doi:10.1167/iovs.10-5979

    Article  PubMed  Google Scholar 

  • Cao J, Jager MJ (2015) Animal eye models for uveal melanoma. Ocular Oncol Pathol 1:141–150. doi:10.1159/000370152

    Article  Google Scholar 

  • Carita G, Nemati F, Decaudin D (2015) Uveal melanoma patient-derived xenografts. Ocular Oncol Pathol 1:161–169. doi:10.1159/000370154

    Article  Google Scholar 

  • Cassoux N, Rodrigues MJ, Plancher C, Asselain B, Levy-Gabriel C, Lumbroso-Le Rouic L, Piperno-Neumann S, Dendale R, Sastre X, Desjardins L, Couturier J (2014) Genome-wide profiling is a clinically relevant and affordable prognostic test in posterior uveal melanoma. Br J Ophthalmol 98(6):769–774. doi:10.1136/bjophthalmol-2013-303867

    Article  PubMed Central  PubMed  Google Scholar 

  • Cassoux N, Thuleau A, Assayag F, Aerts I, Decaudin D (2015) Establishment of an orthotopic xenograft mice model of retinoblastoma suitable for preclinical testing. Ocular Oncol Pathol 1:200–206. doi:10.1159/000370156

    Article  Google Scholar 

  • Chambers AF, Schmidt EE, MacDonald IC, Morris VL, Groom AC (1992) Early steps in hematogenous metastasis of B16F1 melanoma cells in chick embryos studied by high-resolution intravital videomicroscopy. J Natl Cancer Inst 84(10):797–803

    Article  CAS  PubMed  Google Scholar 

  • Chan CC, Fischette M, Shen D, Mahesh SP, Nussenblatt RB, Hochman J (2005) Murine model of primary intraocular lymphoma. Invest Ophthalmol Vis Sci 46(2):415–419. doi:10.1167/iovs.04-0869

    Article  PubMed Central  PubMed  Google Scholar 

  • Chan CC, Rubenstein JL, Coupland SE, Davis JL, Harbour JW, Johnston PB, Cassoux N, Touitou V, Smith JR, Batchelor TT, Pulido JS (2011) Primary vitreoretinal lymphoma: a report from an International Primary Central Nervous System Lymphoma Collaborative Group symposium. Oncologist 16(11):1589–1599. doi:10.1634/theoncologist.2011-0210

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen X, Wu Q, Tan L, Porter D, Jager MJ, Emery C, Bastian BC (2014) Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations. Oncogene 33(39):4724–4734. doi:10.1038/onc.2013.418

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chevez-Barrios P, Hurwitz MY, Louie K, Marcus KT, Holcombe VN, Schafer P, Aguilar-Cordova CE, Hurwitz RL (2000) Metastatic and nonmetastatic models of retinoblastoma. Am J Pathol 157(4):1405–1412. doi:10.1016/S0002-9440(10)64653-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coupland SE, Damato B (2008) Understanding intraocular lymphomas. Clin Experiment Ophthalmol 36(6):564–578. doi:10.1111/j.1442-9071.2008.01843.x

    Article  PubMed  Google Scholar 

  • Coupland SE, Sidiki S, Clark BJ, McClaren K, Kyle P, Lee WR (1996) Metastatic choroidal melanoma to the contralateral orbit 40 years after enucleation. Arch Ophthalmol 114(6):751–756

    Article  CAS  PubMed  Google Scholar 

  • Damato B, Heimann H (2013) Personalized treatment of uveal melanoma. Eye 27(2):172–179

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Damato B, Dopierala JA, Coupland SE (2010) Genotypic profiling of 452 choroidal melanomas with multiplex ligation-dependent probe amplification. Clin Cancer Res 16(24):6083–6092. doi:10.1158/1078-0432.CCR-10-2076

    Article  CAS  PubMed  Google Scholar 

  • De Lange J, Ly LV, Lodder K, Verlaan-de Vries M, Teunisse AF, Jager MJ, Jochemsen AG (2012) Synergistic growth inhibition based on small-molecule p53 activation as treatment for intraocular melanoma. Oncogene 31(9):1105–1116. doi:10.1038/onc.2011.309

    Article  PubMed  CAS  Google Scholar 

  • De Waard-Siebinga I, Blom DJ, Griffioen M, Schrier PI, Hoogendoorn E, Beverstock G, Danen EH, Jager MJ (1995) Establishment and characterization of an uveal-melanoma cell line. Int J Cancer 62(2):155–161

    Article  PubMed  Google Scholar 

  • De Waard NE, Kolovou PE, McGuire SP, Cao J, Frank NY, Frank MH, Jager MJ, Ksander BR (2015a) Expression of multidrug resistance transporter ABCB5 in a murine model of human conjunctival melanoma. Ocular Oncol Pathol 1:182–189. doi: 10.1159/000371555.

    Article  Google Scholar 

  • De Waard NE, Cao J, McGuire SP, Kolovou PE, Jordanova ES, Ksander BR, Jager MJ (2015b) A murine model for metastatic conjunctival melanoma. Invest Ophthalmol Vis Sci doi:10.1167/iovs.14-15239

    Google Scholar 

  • Decaudin D (2011) Primary human tumor xenografted models (“tumorgrafts”) for good management of patients with cancer. Anticancer Drugs 22(9):827–841. doi:10.1097/CAD.0b013e3283475f70

    Article  CAS  PubMed  Google Scholar 

  • Dithmar S, Albert DM, Grossniklaus HE (2000) Animal models of uveal melanoma. Melanoma Res 10(3):195–211

    Article  CAS  PubMed  Google Scholar 

  • El Filali M (2012) Knowledge-based treatment in uveal melanoma. Thesis Universiteit Leiden 2012.

    Google Scholar 

  • Folberg R, Kadkol SS, Frenkel S, Valyi-Nagy K, Jager MJ, Pe'er J, Maniotis AJ (2008) Authenticating cell lines in ophthalmic research laboratories. Invest Ophthalmol Vis Sci 49(11):4697–4701. doi:10.1167/iovs.08-2324

    Article  PubMed Central  PubMed  Google Scholar 

  • Garber K (2009) From human to mouse and back: “tumorgraft” models surge in popularity. J Natl Cancer Inst 101(1):6–8. doi:10.1093/jnci/djn481

    Article  PubMed  Google Scholar 

  • Gear H, Williams H, Kemp EG, Roberts F (2004) BRAF mutations in conjunctival melanoma. Invest Ophthalmol Vis Sci 45(8):2484–2488. doi:10.1167/iovs.04-0093

    Article  PubMed  Google Scholar 

  • Greene HS (1958) A spontaneous melanoma in the hamster with a propensity for amelanotic alteration and sarcomatous transformation during transplantation. Cancer Res 18(4):422–425

    CAS  PubMed  Google Scholar 

  • Griewank KG, Yu X, Khalili J, Sozen MM, Stempke-Hale K, Bernatchez C, Wardell S, Bastian BC, Woodman SE (2012) Genetic and molecular characterization of uveal melanoma cell lines. Pigment Cell Melanoma Res 25(2):182–187. doi:10.1111/j.1755-148X.2012.00971.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Griewank KG, Westekemper H, Murali R, Mach M, Schilling B, Wiesner T, Schimming T, Livingstone E, Sucker A, Grabellus F, Metz C, Susskind D, Hillen U, Speicher MR, Woodman SE, Steuhl KP, Schadendorf D (2013) Conjunctival melanomas harbor BRAF and NRAS mutations and copy number changes similar to cutaneous and mucosal melanomas. Clin Cancer Res 19(12):3143–3152. doi:10.1158/1078-0432.CCR-13-0163

    Article  CAS  PubMed  Google Scholar 

  • Grossniklaus HE, Barron BC, Wilson MW (1995) Murine model of anterior and posterior ocular melanoma. Curr Eye Res 14(5):399–404

    Article  CAS  PubMed  Google Scholar 

  • Grossniklaus HE, Wilson MW, Barron BC, Lynn MJ (1996) Anterior vs posterior intraocular melanoma. Metastatic differences in a murine model. Arch Ophthalmol 114(9):1116–1120

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  • Harbour JW, Onken MD, Roberson ED, Duan S, Cao L, Worley LA, Council ML, Matatall KA, Helms C, Bowcock AM (2010) Frequent mutation of BAP1 in metastasizing uveal melanomas. Science 330(6009):1410–1413. doi:10.1126/science.1194472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heegaard S, Spang-Thomsen M, Prause JU (2003) Establishment and characterization of human uveal malignant melanoma xenografts in nude mice. Melanoma Res 13(3):247–251. doi:10.1097/01.cmr.0000056239.78713.c8

    Article  CAS  PubMed  Google Scholar 

  • Hochberg FH, Miller DC (1988) Primary central nervous system lymphoma. J Neurosurg 68(6):835–853. doi:10.3171/jns.1988.68.6.0835

    Article  CAS  PubMed  Google Scholar 

  • Jager MJ, Coupland SE (editors) (2015) Animal models in ocular oncology. Ocular Oncol Pathol 1(3):123–222

    Google Scholar 

  • Journee-de Korver JG, Oosterhuis JA, Kakebeeke-Kemme HM, de Wolff-Rouendaal D (1992) Transpupillary thermotherapy (TTT) by infrared irradiation of choroidal melanoma. Doc Ophthalmol 82(3):185–191

    Article  CAS  PubMed  Google Scholar 

  • Journee-de Korver JG, Oosterhuis JA, Vrensen GF (1995) Light and electron microscopic findings on experimental melanomas after hyperthermia at 50 degrees C. Melanoma Res 5(6):393–402

    Article  CAS  PubMed  Google Scholar 

  • Kalirai H, Dodson A, Faqir S, Damato B, Coupland SE (2014) Lack of BAP1 protein expression in uveal melanoma is associated with increased metastatic risk and has utility in routine prognostic testing. Br J Cancer 111(7):1373–1380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kalirai H, Shahidipour H, Coupland SE, Luyten GPM (2015) Use of the chick embryo model in uveal melanoma. Ocular Oncol Pathol 1:133–140. doi:10.1159/000370151

    Article  Google Scholar 

  • Kang SJ, Grossniklaus HE (2011) Rabbit model of retinoblastoma. J Biomed Biotechnol 2011:394730. doi:10.1155/2011/394730

    Article  PubMed Central  PubMed  Google Scholar 

  • Keijser S, Maat W, Missotten GS, de Keizer RJ (2007) A new cell line from a recurrent conjunctival melanoma. Br J Ophthalmol 91(11):1566–1567. doi:10.1136/bjo.2006.110841

    Article  PubMed Central  PubMed  Google Scholar 

  • Kenawy N, Lake SL, Coupland SE, Damato BE (2013) Conjunctival melanoma and melanocytic intra-epithelial neoplasia. Eye 27(2):142–152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Koopmans AE, Verdijk RM, Brouwer RW, van den Bosch TP, van den Berg MM, Vaarwater J, Kockx CE, Paridaens D, Naus NC, Nellist M, van IWF, Kilic E, de Klein A (2014) Clinical significance of immunohistochemistry for detection of BAP1 mutations in uveal melanoma. Mod Pathol 27(10):1321–1330. doi:10.1038/modpathol.2014.43

    Google Scholar 

  • Krause M, Kwong KK, Xiong J, Gragoudas ES, Young LH (2002) MRI of blood volume and cellular uptake of superparamagnetic iron in an animal model of choroidal melanoma. Ophthalmic Res 34(4):241–250. doi:63883

    Article  CAS  PubMed  Google Scholar 

  • Lake SL, Jmor F, Dopierala J, Taktak AF, Coupland SE, Damato BE (2011) Multiplex ligation-dependent probe amplification of conjunctival melanoma reveals common BRAF V600E gene mutation and gene copy number changes. Invest Ophthalmol Vis Sci 52(8):5598–5604. doi:10.1167/iovs.10-6934

    Article  CAS  PubMed  Google Scholar 

  • Laurent C, Gentien D, Piperno-Neumann S, Nemati F, Nicolas A, Tesson B, Desjardins L, Mariani P, Rapinat A, Sastre-Garau X, Couturier J, Hupe P, de Koning L, Dubois T, Roman-Roman S, Stern MH, Barillot E, Harbour JW, Saule S, Decaudin D (2013) Patient-derived xenografts recapitulate molecular features of human uveal melanomas. Mol Oncol 7(3):625–636. doi:10.1016/j.molonc.2013.02.004

    Article  CAS  PubMed  Google Scholar 

  • Laurie NA, Gray JK, Zhang J, Leggas M, Relling M, Egorin M, Stewart C, Dyer MA (2005) Topotecan combination chemotherapy in two new rodent models of retinoblastoma. Clin Cancer Res 11(20):7569–7578. doi:10.1158/1078-0432.CCR-05-0849

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Mahesh SP, Shen de F, Liu B, Siu WO, Hwang FS, Wang QC, Chan CC, Pastan I, Nussenblatt RB (2006) Eradication of tumor colonization and invasion by a B cell-specific immunotoxin in a murine model for human primary intraocular lymphoma. Cancer Res 66(21):10586–10593. doi:10.1158/0008-5472.CAN-06-1981

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lopez-Velasco R, Morilla-Grasa A, Saornil-Alvarez MA, Ordonez JL, Blanco G, Rabano G, Fernandez N, Almaraz A (2005) Efficacy of five human melanocytic cell lines in experimental rabbit choroidal melanoma. Melanoma res 15(1):29–37

    Article  CAS  PubMed  Google Scholar 

  • Luyten GP, Mooy CM, De Jong PT, Hoogeveen AT, Luider TM (1993) A chicken embryo model to study the growth of human uveal melanoma. Biochem Biophys Res Commun 192(1):22–29

    Article  CAS  PubMed  Google Scholar 

  • Luyten GP, Naus NC, Mooy CM, Hagemeijer A, Kan-Mitchell J, Van Drunen E, Vuzevski V, De Jong PT, Luider TM (1996) Establishment and characterization of primary and metastatic uveal melanoma cell lines. Int J Cancer 66(3):380–387. doi:10.1002/(SICI)1097-0215(19960503)66:3<380::AID-IJC19>3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  • Ly LV, Baghat A, Versluis M, Jordanova ES, Luyten GP, van Rooijen N, van Hall T, van der Velden PA, Jager MJ (2010) In aged mice, outgrowth of intraocular melanoma depends on proangiogenic M2-type macrophages. J Immunol 185(6):3481–3488. doi:10.4049/jimmunol.0903479

    Article  CAS  PubMed  Google Scholar 

  • Ma D, Niederkorn JY (1995) Efficacy of tumor-infiltrating lymphocytes in the treatment of hepatic metastases arising from transgenic intraocular tumors in mice. Invest Ophthalmol Vis Sci 36(6):1067–1075

    CAS  PubMed  Google Scholar 

  • Ma D, Niederkorn JY (1998) Role of epidermal growth factor receptor in the metastasis of intraocular melanomas. Invest Ophthalmol Vis Sci 39 (7):1067–1075

    CAS  PubMed  Google Scholar 

  • Ma D, Luyten GP, Luider TM, Jager MJ, Niederkorn JY (1996) Association between NM23-H1 gene expression and metastasis of human uveal melanoma in an animal model. Invest Ophthalmol Vis Sci 37(11):2293–2301

    CAS  PubMed  Google Scholar 

  • Maat W, Ly LV, Jordanova ES, de Wolff-Rouendaal D, Schalij-Delfos NE, Jager MJ (2008) Monosomy of chromosome 3 and an inflammatory phenotype occur together in uveal melanoma. Invest Ophthalmol Vis Sci 49(2):505–510. doi:10.1167/iovs.07-0786

    Article  PubMed  Google Scholar 

  • Marques IJ, Weiss FU, Vlecken DH, Nitsche C, Bakkers J, Lagendijk AK, Partecke LI, Heidecke CD, Lerch MM, Bagowski CP (2009) Metastatic behaviour of primary human tumours in a zebrafish xenotransplantation model. BMC Cancer 9:128. doi:10.1186/1471-2407-9-128

    Article  PubMed Central  PubMed  Google Scholar 

  • Marshall JC, Fernandes BF, Di Cesare S, Maloney SC, Logan PT, Antecka E, Burnier MN, Jr. (2007) The use of a cyclooxygenase-2 inhibitor (Nepafenac) in an ocular and metastatic animal model of uveal melanoma. Carcinogenesis 28(9):2053–2058. doi:10.1093/carcin/bgm091

    Article  CAS  PubMed  Google Scholar 

  • McFall RC, Sery TW, Makadon M (1977) Characterization of a new continuous cell line derived from a human retinoblastoma. Cancer Res 37(4):1003–1010

    CAS  PubMed  Google Scholar 

  • Mineo JF, Scheffer A, Karkoutly C, Nouvel L, Kerdraon O, Trauet J, Bordron A, Dessaint JP, Labalette M, Berthou C, Labalette P (2008) Using human CD20-transfected murine lymphomatous B cells to evaluate the efficacy of intravitreal and intracerebral rituximab injections in mice. Invest Ophthalmol Vis Sci 49(11):4738–4745. doi:10.1167/iovs.07-1494

    Article  PubMed  Google Scholar 

  • Missotten GS, Keijser S, De Keizer RJ, De Wolff-Rouendaal D (2005) Conjunctival melanoma in the Netherlands: a nationwide study. Invest Ophthalmol Vis Sci 46(1):75–82. doi:10.1167/iovs.04-0344

    Article  PubMed  Google Scholar 

  • Mitsiades N, Chew SA, He B, Riechardt AI, Karadedou T, Kotoula V, Poulaki V (2011) Genotype-dependent sensitivity of uveal melanoma cell lines to inhibition of B-Raf, MEK, and Akt kinases: rationale for personalized therapy. Invest Ophthalmol Vis Sci 52(10):7248–7255. doi:10.1167/iovs.11-7398

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nair RM, Vemuganti GK (2015) Transgenic models in retinoblastoma research. Ocular Oncol Pathol 1:207–213. doi:10.1159/000370157

    Article  Google Scholar 

  • Nareyeck G, Wuestemeyer H, von der Haar D, Anastassiou G (2005) Establishment of two cell lines derived from conjunctival melanomas. Exp Eye Res 81(3):361–362. doi:10.1016/j.exer.2005.04.018

    Article  CAS  PubMed  Google Scholar 

  • Nemati F, Sastre-Garau X, Laurent C, Couturier J, Mariani P, Desjardins L, Piperno-Neumann S, Lantz O, Asselain B, Plancher C, Robert D, Peguillet I, Donnadieu MH, Dahmani A, Bessard MA, Gentien D, Reyes C, Saule S, Barillot E, Roman-Roman S, Decaudin D (2010) Establishment and characterization of a panel of human uveal melanoma xenografts derived from primary and/or metastatic tumors. Clin Cancer Res 16(8):2352–2362. doi:10.1158/1078-0432.CCR-09-3066

    Article  CAS  PubMed  Google Scholar 

  • Niederkorn JY (1984) Enucleation in consort with immunologic impairment promotes metastasis of intraocular melanomas in mice. Invest Ophthalmol Vis Sci 25(9):1080–1086

    CAS  PubMed  Google Scholar 

  • Rem AI, Oosterhuis JA, Keunen JE, Journee-De Korver HG (2004) Transscleral thermotherapy with laser-induced and conductive heating in hamster Greene melanoma. Melanoma Res 14(5):409–414

    Article  PubMed  Google Scholar 

  • Robanus-Maandag E, Dekker M, van der Valk M, Carrozza ML, Jeanny JC, Dannenberg JH, Berns A, te Riele H (1998). p107 is a suppressor of retinoblastoma development in pRb-deficient mice. Genes Dev 12:1599–1609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Romanowska-Dixon B, Urbanska K, Elas M, Pajak S, Zygulska-Mach H, Miodonski A (2001) Angiomorphology of the pigmented Bomirski melanoma growing in hamster eye. Ann Anat 183(6):559–565. doi:10.1016/S0940-9602(01)80069-8

    Article  CAS  PubMed  Google Scholar 

  • Romer TJ, van Delft JL, de Wolff-Rouendaal D, Jager MJ (1992) Hamster Greene melanoma implanted in the anterior chamber of a rabbit eye: a reliable tumor model? Ophthalmic Res 24(2):119–124

    Article  CAS  PubMed  Google Scholar 

  • Rous P, Murphy JB (1912) The behavior of chicken sarcoma implanted in the developing embryo. J Exp Med 15(2):119–132

    Google Scholar 

  • Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M, Zhan Q, Jordan S, Duncan LM, Weishaupt C, Fuhlbrigge RC, Kupper TS, Sayegh MH, Frank MH (2008) Identification of cells initiating human melanomas. Nature 451(7176):345–349. doi:10.1038/nature06489

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schuitmaker JJ, Vrensen GF, van Delft JL, de Wolff-Rouendaal D, Dubbelman TM, de Wolf A (1991) Morphologic effects of bacteriochlorin a and light in vivo on intraocular melanoma. Invest Ophthalmol Vis Sci 32(10):2683–2688

    CAS  PubMed  Google Scholar 

  • Shah AA, Bourne TD, Murali R (2013) BAP1 protein loss by immunohistochemistry: a potentially useful tool for prognostic prediction in patients with uveal melanoma. Pathology 45(7):651–656.

    Article  CAS  PubMed  Google Scholar 

  • Shields CL, Shields JA (2004) Diagnosis and management of retinoblastoma. Cancer Control 11(5):317–327

    PubMed  Google Scholar 

  • Shields CL, Markowitz JS, Belinsky I, Schwartzstein H, George NS, Lally SE, Mashayekhi A, Shields JA (2011) Conjunctival melanoma: outcomes based on tumor origin in 382 consecutive cases. Ophthalmology 118(2):389–395

    Article  PubMed  Google Scholar 

  • Singh AD, Topham A (2003) Incidence of uveal melanoma in the United States: 1973–1997. Ophthalmology 110(5):956–61

    Article  PubMed  Google Scholar 

  • Sisley K, Rennie IG, Parsons MA, Jacques R, Hammond DW, Bell SM, Potter AM, Rees RC (1997) Abnormalities of chromosomes 3 and 8 in posterior uveal melanoma correlate with prognosis. Genes Chromosom Cancer 19(1):22–28

    Article  CAS  PubMed  Google Scholar 

  • Smith JR, Falkenhagen KM, Coupland SE, Chipps TJ, Rosenbaum JT, Braziel RM (2007) Malignant B cells from patients with primary central nervous system lymphoma express stromal cell-derived factor-1. Am J Clin Pathol 127(4):633–641.

    Article  CAS  PubMed  Google Scholar 

  • Spendlove HE, Damato BE, Humphreys J, Barker KT, Hiscott PS, Houlston RS (2004) BRAF mutations are detectable in conjunctival but not uveal melanomas. Melanoma Res 14(6):449–452

    Article  CAS  PubMed  Google Scholar 

  • Surriga O, Rajasekhar VK, Ambrosini G, Dogan Y, Huang R, Schwartz GK (2013) Crizotinib, a c-Met inhibitor, prevents metastasis in a metastatic uveal melanoma model. Mol Cancer Ther 12(12):2817–2826

    Article  CAS  PubMed  Google Scholar 

  • Theriault BL, Dimaras H, Gallie BL, Corson TW (2014) The genomic landscape of retinoblastoma: a review. Clin Exp Ophthalmol 42(1):33–52

    Article  Google Scholar 

  • Tolleson WH, Doss JC, Latendresse J, Warbritton AR, Melchior WB, Jr., Chin L, Dubielzig RR, Albert DM (2005) Spontaneous uveal amelanotic melanoma in transgenic Tyr-RAS+ Ink4a/Arf-/- mice. Arch Ophthalmol 123(8):1088–1094

    Article  CAS  PubMed  Google Scholar 

  • van den Bosch T, van Beek JG, Vaarwater J, Verdijk RM, Naus NC, Paridaens D, de Klein A, Kilic E (2012) Higher percentage of FISH-determined monosomy 3 and 8q amplification in uveal melanoma cells relate to poor patient prognosis. Invest Ophthalmol Vis Sci 53(6):2668–2674. doi:10.1167/iovs.11-8697

    Article  PubMed  CAS  Google Scholar 

  • van der Ent W, Burrello C, Teunisse AF, Ksander BR, van der Velden PA, Jager MJ, Jochemsen AG, Snaar-Jagalska BE (2014) Modeling of human uveal melanoma in zebrafish xenograft embryos. Invest Ophthalmol Vis Sci 55(10):6612–6622. doi:10.1167/iovs.14-15202

    Article  PubMed  CAS  Google Scholar 

  • Van der Ent W, Burrelllo C, de Lange MJ, van der Velden PA, Jochemsen AG, Jager MJ, Snaar-Jagalska BE (2015). Embryonic zebrafish: different phenotypes after injection of human uveal melanoma cells. Ocular Oncol Pathol 1:170–181. doi:10.1159/000370159

    Article  Google Scholar 

  • Van Essen TH, van Pelt SI, Versluis M, Bronkhorst IH, van Duinen SG, Marinkovic M, Kroes WG, Ruivenkamp CA, Shukla S, de Klein A, Kilic E, Harbour JW, Luyten GP, van der Velden PA, Verdijk RM, Jager MJ (2014) Prognostic parameters in uveal melanoma and their association with BAP1 expression. Br J Ophthalmol 98(12):1738–1743. doi:10.1136/bjophthalmol-2014-305047

    Article  PubMed  Google Scholar 

  • Van Raamsdonk CD, Bezrookove V, Green G, Bauer J, Gaugler L, O'Brien JM, Simpson EM, Barsh GS, Bastian BC (2009) Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature 457(7229):599–602. doi:10.1038/nature07586

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Van Raamsdonk CD, Griewank KG, Crosby MB, Garrido MC, Vemula S, Wiesner T, Obenauf AC, Wackernagel W, Green G, Bouvier N, Sozen MM, Baimukanova G, Roy R, Heguy A, Dolgalev I, Khanin R, Busam K, Speicher MR, O'Brien J, Bastian BC (2010) Mutations in GNA11 in uveal melanoma. N Engl J Med 363(23):2191–2199. doi:10.1056/NEJMoa1000584

    Article  PubMed Central  PubMed  Google Scholar 

  • Versluis M, de Lange MJ, van Pelt SI, Ruivenkamp CA, Kroes WG, Cao J, Jager MJ, Luyten GP, van der Velden PA (2015) Digital PCR validates 8q dosage as prognostic tool in uveal melanoma. PLos One 10(3):e0116371. doi:10.1371/journal.pone.0116371

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Weber JL, Smalley KS, Sondak VK, Gibney GT (2013) Conjunctival melanomas harbor BRAF and NRAS mutations–letter. Clin Cancer Res 19(22):6329–6330. doi:10.1158/1078-0432.CCR-13-2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White L, Meyer PR, Benedict WF (1984) Establishment and characterization of a human T-cell leukemia line (LALW-2) in nude mice. J Natl Cancer Inst 72(5):1029–1038

    CAS  PubMed  Google Scholar 

  • White L, Trickett A, Norris MD, Tobias V, Sosula L, Marshall GM, Stewart BW (1990) Heterotransplantation of human lymphoid neoplasms using a nude mouse intraocular xenograft model. Cancer Res 50(10):3078–3086

    CAS  PubMed  Google Scholar 

  • Wilson BJ, Schatton T, Zhan Q, Gasser M, Ma J, Saab KR, Schanche R, Waaga-Gasser AM, Gold JS, Huang Q, Murphy GF, Frank MH, Frank NY (2011) ABCB5 identifies a therapy-refractory tumor cell population in colorectal cancer patients. Cancer Res 71(15):5307–5316. doi:10.1158/0008-5472.CAN-11-0221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Windle JJ, Albert DM, O’Brien JM, Marcus DM, Disteche CM, Bernards R, Mellon PL (1990). Retinoblastoma in transgenic mice. Nature 343:665–669

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Jager MJ, Grossniklaus HE (2010) Bevacizumab suppression of establishment of micrometastases in experimental ocular melanoma. Invest Ophthalmol Vis Sci 6:2835–2842. doi:10.1167/iovs.09-4755

    Article  Google Scholar 

  • Yang H, Cao J, Grossniklaus HE (2015) Uveal melanoma metastasis models. Ocular Oncol Pathol 1:151–160. doi:10.1159/000370153

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine J. Jager .

Editor information

Editors and Affiliations

Commentary

Commentary

Arun D. Singh

e-mail: SINGHA@ccf.org

Department of Ophthalmic Oncology,

Cole Eye Institute,

Cleveland Clinic,

Cleveland, OH, USA

The field of ophthalmic oncology includes a large variety of ocular and periocular malignant tumors. Because these tumors are rare, many aspects of their biologic behavior and possible therapeutic interventions can only be explored using animal models. As elegantly summarized in this review, several different animal models that are spontaneous, transgenic or induced, exist for ophthalmic malignant tumors in mice, rats, chick embryos, zebrafish, and Drosophila. Animal models for conjunctival melanoma, uveal melanoma, retinoblastoma, and vitreoretinal lymphoma, among others are under active investigation. With regards Animal Models of Ocular 10 Tumors to uveal melanoma, use of animal models led to determination of optimal settings for transpupillary thermotherapy. Additional uveal melanoma models involving anterior or posterior chamber inoculations have been used to study metastatic behavior, tumor angiogenesis, and tumor immunology. With zebrafish model, effects of drugs on melanoma cell migration has been studied. Similarly, with a new model of retinoblastoma xenograft (injected into the subretinal space), efficacy of intravitreal injections of melphalan and carboplatin are under investigation as a step prior to clinical evaluation. Hopefully, detailed study of animal models will eventually improve the outcomes of patients with rare ophthalmic malignant tumors.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jager, M. et al. (2016). Animal Models of Ocular Tumors. In: Chan, CC. (eds) Animal Models of Ophthalmic Diseases. Essentials in Ophthalmology. Springer, Cham. https://doi.org/10.1007/978-3-319-19434-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19434-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19433-2

  • Online ISBN: 978-3-319-19434-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics