Orbital Motion in Galactic Nuclei

  • David MerrittEmail author
Part of the Lecture Notes in Physics book series (LNP, volume 905)


Encounters between stars and stellar remnants at the centers of galaxies drive many important processes. The fact that these encounters take place near a supermassive black hole (SBH) alters the dynamics in a number of ways: (1) The orbital motion is quasi-Keplerian so that correlations are maintained for much longer than in purely random encounters; (2) relativity affects the motion, through mechanisms like precession of the periastron and frame dragging; (3) the SBH spin is affected, directly by capture and indirectly by spin-orbit torques. The interplay between these processes is just now beginning to be understood, but a key result is that relativity can be crucially important even at distances that are thousands of gravitational radii from the SBH.


Black Hole Angular Momentum Semimajor Axis Precession Rate Delaunay Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grant AST 1211602 from the National Science Foundation, and by grant NNX13AG92G from the National Aeronautics and Space Administration. I thank Eugene Vasiliev for providing Fig. 5.3, and Adrian Hamers for allowing me to use Fig. 14b in advance of publication.


  1. 1.
    Antonini, F., Merritt, D.: Relativity and the evolution of the Galactic Center S-star orbits. Astrophys. J. Lett. 763, L10 (2013)CrossRefADSGoogle Scholar
  2. 2.
    Barker, B.M., O’Connell, R.F.: Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments. Phys. Rev. D 12, 329–335 (1975)CrossRefADSGoogle Scholar
  3. 3.
    Bartko, H., Martins, F., Trippe, S., Fritz, T.K., Genzel, R., Ott, T., Eisenhauer, F., Gillessen, S., Paumard, T., Alexander, T., Dodds-Eden, K., Gerhard, O., Levin, Y., Mascetti, L., Nayakshin, S., Perets, H.B., Perrin, G., Pfuhl, O., Reid, M.J., Rouan, D., Zilka, M., Sternberg, A.: An extremely top-heavy initial mass function in the galactic center stellar disks. Astrophys. J. 708, 834–840 (2010)CrossRefADSGoogle Scholar
  4. 4.
    Blanchet, L.: Gravitational radiation from post-Newtonian sources and inspiralling compact binaries. Living Rev. Relativ. 17(2) (2014). doi:10.12942/lrr-2014-2Google Scholar
  5. 5.
    Blandford, R., Teukolsky, S.A.: Arrival-time analysis for a pulsar in a binary system. Astrophys. J. 205, 580–591 (1976)CrossRefADSGoogle Scholar
  6. 6.
    Chandrasekhar, S.: Ellipsoidal Figures of Equilibrium. Yale University Press, New Haven (1969)zbMATHGoogle Scholar
  7. 7.
    Damour, T., Deruelle, N.: General relativistic celestial mechanics of binary systems, I. The post-Newtonian motion. Ann. l’I.H.P. Phys. Théor. 43, 107–132 (1985)Google Scholar
  8. 8.
    de Sitter, W.: On Einstein’s theory of gravitation and its astronomical consequences, Second paper. Mon. Not. R. Astron. Soc. 77, 155–184 (1916)CrossRefADSGoogle Scholar
  9. 9.
    Einstein, A., Infeld, L., Hoffmann, B.: The gravitational equations and the problem of motion. Ann. Math. 39, 65–100 (1938)MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Eisenhauer, F., Genzel, R., Alexander, T., Abuter, R., Paumard, T., Ott, T., Gilbert, A., Gillessen, S., Horrobin, M., Trippe, S., Bonnet, H., Dumas, C., Hubin, N., Kaufer, A., Kissler-Patig, M., Monnet, G., Ströbele, S., Szeifert, T., Eckart, A., Schödel, R., Zucker, S.: SINFONI in the galactic center: young stars and infrared flares in the central light-month. Astrophys. J. 628, 246–259 (2005)CrossRefADSGoogle Scholar
  11. 11.
    Epstein, R.: The binary pulsar - Post-Newtonian timing effects. Astrophys. J. 216, 92–100 (1977)CrossRefADSGoogle Scholar
  12. 12.
    Ghez, A.M., Duchene, G., Matthews, K., Hornstein, S.D., Tanner, A., Larkin, J., Morris, M., Becklin, E.E., Salim, S., Kremenek, T., Thompson, D., Soifer, B.T., Neugebauer, G., McLean, I.: The first measurement of spectral lines in a short-period star bound to the galaxy’s central black hole: a paradox of youth. Astrophys. J. Lett. 586, L127–L131 (2003)CrossRefADSGoogle Scholar
  13. 13.
    Ghez, A.M., Salim, S., Weinberg, N.N., Lu, J.R., Do, T., Dunn, J.K., Matthews, K., Morris, M.R., Yelda, S., Becklin, E.E., Kremenek, T., Milosavljevic, M., Naiman, J.: Measuring distance and properties of the milky way’s central supermassive black hole with stellar orbits. Astrophys. J. 689, 1044–1062 (2008)CrossRefADSGoogle Scholar
  14. 14.
    Gillessen, S., Eisenhauer, F., Fritz, T.K., Bartko, H., Dodds-Eden, K., Pfuhl, O., Ott, T., Genzel, R.: The orbit of the star S2 around SGR A* from very large telescope and keck data. Astrophys. J. Lett. 707, L114–L117 (2009)CrossRefADSGoogle Scholar
  15. 15.
    Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F., Ott, T.: Monitoring stellar orbits around the massive black hole in the galactic center. Astrophys. J. 692, 1075–1109 (2009)CrossRefADSGoogle Scholar
  16. 16.
    Gürkan, M.A., Hopman, C.: Resonant relaxation near a massive black hole: the dependence on eccentricity. Mon. Not. R. Astron. Soc. 379, 1083–1088 (2007)CrossRefADSGoogle Scholar
  17. 17.
    Hamers, A., Portegies Zwart, S., Merritt, D.: Relativistic dynamics of stars near a supermassive black hole. (2014) [ArXiv e-prints]Google Scholar
  18. 18.
    Infeld, L., Plebanski, J.: Motion and Relativity. Pergamon Press, Oxford (1960)zbMATHGoogle Scholar
  19. 19.
    Kidder, L.E.: Coalescing binary systems of compact objects to (post)5∕2-Newtonian order, V. Spin effects. Phys. Rev. D 52, 821–847 (1995)ADSGoogle Scholar
  20. 20.
    Lense, J., Thirring, H.: Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Phys. Z. 19, 156 (1918)zbMATHGoogle Scholar
  21. 21.
    Levin, Y., Beloborodov, A.M.: Stellar disk in the galactic center: a remnant of a dense accretion disk? Astrophys. J. Lett. 590, L33–L36 (2003)CrossRefADSGoogle Scholar
  22. 22.
    Magorrian, J., Tremaine, S.: Rates of tidal disruption of stars by massive central black holes. Mon. Not. R. Astron. Soc. 309, 447–460 (1999)CrossRefADSGoogle Scholar
  23. 23.
    Merritt, D., Alexander, T., Mikkola, S., Will, C.M.: Testing properties of the Galactic center black hole using stellar orbits. Phys. Rev. D 81(6), 062002 (2010)CrossRefADSGoogle Scholar
  24. 24.
    Merritt, D., Alexander, T., Mikkola, S., Will, C.M.: Stellar dynamics of extreme-mass-ratio inspirals. Phys. Rev. D 84(4), 044024 (2011)CrossRefADSGoogle Scholar
  25. 25.
    Merritt, D., Schnittman, J.D., Komossa, S.: Hypercompact stellar systems around recoiling supermassive black holes. Astrophys. J. 699, 1690–1710 (2009)CrossRefADSGoogle Scholar
  26. 26.
    Merritt, D., Vasiliev, E.: Orbits around black holes in triaxial nuclei. Astrophys. J. 726, 61 (2011)CrossRefADSGoogle Scholar
  27. 27.
    Merritt, D., Vasiliev, E.: Spin evolution of supermassive black holes and galactic nuclei. Phys. Rev. D 86(10), 102002 (2012)CrossRefADSGoogle Scholar
  28. 28.
    Nayakshin, S., Dehnen, W., Cuadra, J., Genzel, R.: Weighing the young stellar discs around Sgr A*. Mon. Not. R. Astron. Soc. 366, 1410–1414 (2006)CrossRefADSGoogle Scholar
  29. 29.
    Paumard, T., Genzel, R., Martins, F., Nayakshin, S., Beloborodov, A.M., Levin, Y., Trippe, S., Eisenhauer, F., Ott, T., Gillessen, S., Abuter, R., Cuadra, J., Alexander, T., Sternberg, A.: The two young star disks in the central parsec of the galaxy: properties, dynamics, and formation. Astrophys. J. 643, 1011–1035 (2006)CrossRefADSGoogle Scholar
  30. 30.
    Peters, P.C.: Gravitational radiation and the motion of two point masses. Phys. Rev. B 136, 1224–1232 (1964)CrossRefADSGoogle Scholar
  31. 31.
    Rauch, K.P., Tremaine, S.: Resonant relaxation in stellar systems. New Astron. 1, 149–170 (1996)CrossRefADSGoogle Scholar
  32. 32.
    Sabha, N., Eckart, A., Merritt, D., Zamaninasab, M., Witzel, G., García-Marín, M., Jalali, B., Valencia-S., M., Yazici, S., Buchholz, R., Shahzamanian, B., Rauch, C., Horrobin, M., Straubmeier, C.: The S-star cluster at the center of the Milky Way. On the nature of diffuse NIR emission in the inner tenth of a parsec. Astron. Astrophys. 545, A70 (2012)Google Scholar
  33. 33.
    Sambhus, N., Sridhar, S.: Stellar orbits in triaxial clusters around black holes in galactic nuclei. Astrophys. J. 542, 143–160 (2000)CrossRefADSGoogle Scholar
  34. 34.
    Schodel, R., Feldmeier, A., Kunneriath, D., Stolovy, S., Neumayer, N., Amaro-Seoane, P., Nishiyama, S.: Surface brightness profile of the milky way’s nuclear star cluster. (2014) [ArXiv e-prints]Google Scholar
  35. 35.
    Sigurdsson, S., Rees, M.J.: Capture of stellar mass compact objects by massive black holes in galactic cusps. Mon. Not. R. Astron. Soc. 284, 318–326 (1997)CrossRefADSGoogle Scholar
  36. 36.
    Vasiliev, E., Merritt, D.: The loss-cone problem in axisymmetric nuclei. Astrophys. J. 774, 87 (2013)CrossRefADSGoogle Scholar
  37. 37.
    Wagoner, R.V., Will, C.M.: Post-Newtonian gravitational radiation from orbiting point masses. Astrophys. J. 210, 764–775 (1976)CrossRefADSGoogle Scholar
  38. 38.
    Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)Google Scholar
  39. 39.
    Will, C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1993)zbMATHCrossRefGoogle Scholar
  40. 40.
    Will, C.M.: Testing the general relativistic “no-hair” theorems using the galactic center black hole Sagittarius A*. Astrophys. J. Lett. 674, L25–L28 (2008)CrossRefADSGoogle Scholar
  41. 41.
    Will, C.M.: Incorporating post-Newtonian effects in N-body dynamics. Phys. Rev. D 89(4), 044043 (2014)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Physics and AstronomyRochester Institute of TechnologyRochesterUSA

Personalised recommendations