Advertisement

The Balance of Power: Accretion and Feedback in Stellar Mass Black Holes

  • Rob FenderEmail author
  • Teo Muñoz-Darias
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 905)

Abstract

In this review we discuss the population of stellar-mass black holes in our galaxy and beyond, which are the extreme endpoints of massive star evolution. In particular we focus on how we can attempt to balance the available accretion energy with feedback to the environment via radiation, jets and winds, considering also possible contributions to the energy balance from black hole spin and advection. We review quantitatively the methods which are used to estimate these quantities, regardless of the details of the astrophysics close to the black hole. Once these methods have been outlined, we work through an outburst of a black hole X-ray binary system, estimating the flow of mass and energy through the different accretion rates and states. While we focus on feedback from stellar mass black holes in X-ray binary systems, we also consider the applicability of what we have learned to supermassive black holes in active galactic nuclei. As an important control sample we also review the coupling between accretion and feedback in neutron stars, and show that it is very similar to that observed in black holes, which strongly constrains how much of the astrophysics of feedback can be unique to black holes.

Keywords

Black Hole Neutron Star Radio Emission Accretion Rate Hard State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

RF would like to acknowledge an uncountable number of useful conversations with collaborators, friends and occasional rivals. He would also like to acknowledge the hospitality provided in Como during the school which resulted in this book, and the support of the editor, Francesco Haardt. Mickaël Coriat kindly supplied the functional fit to the outburst of GX 339-4. TMD would like to acknowledge the support and research opportunities provided by the EU programs Black Hole Universe (Initial Training Network 215212) and Marie Curie Intra-European Fellowship 2011-301355, during his research positions in INAF-Brera, Southampton and Oxford, where some of the ideas discussed here were developed. He would like also to acknowledge all the collaborators, from Ph.D. students to heads of group, involved in this intense period of research work. This work was partially supported by ERC grant 267697 “4 PI SKY: Extreme Astrophysics with Revolutionary Radio Telescopes”.

References

  1. 1.
    Balbus, S.A.: Enhanced angular momentum transport in accretion disks. Annu. Rev. Astron. Astrophys. 41, 555 (2003)CrossRefADSGoogle Scholar
  2. 2.
    Begelman, M.C., McKee, C.F., Shields, G.A.: Compton heated winds and coronae above accretion disks. I dynamics. Astrophys. J. 271, 70 (1983)CrossRefADSGoogle Scholar
  3. 3.
    Belloni, T.M., Motta, S.E., Muñoz-Darias, T.: Black hole transients. Bull. Astron. Soc. India 39, 409 (2011)ADSGoogle Scholar
  4. 4.
    Bildsten, L., Chakrabarty, D., Chiu, J., Finger, M.H., Koh, D.T., Nelson, R.W., Prince, T.A., Rubin, B.C., Scott, M.D., Stollberg, M., Vaughan, B.A., Wilson, C.A., Wilson, R.B.: Observations of accreting pulsars. Astrophys. J. Suppl. Ser. 113, 367 (1997)CrossRefADSGoogle Scholar
  5. 5.
    Brown, G.E., Bethe, H.A.: A scenario for a large number of low-mass black holes in the galaxy. Astrophys. J. 423, 659 (1994)CrossRefADSGoogle Scholar
  6. 6.
    Burbidge, G.R.: Estimates of the total energy in particles and magnetic field in the non-thermal radio sources. Astrophys. J. 129, 849 (1959)CrossRefADSGoogle Scholar
  7. 7.
    Casares, J., Jonker, P.G.: Mass measurements of stellar and intermediate-mass black holes. Space Sci. Rev. 183, 223 (2014)CrossRefADSGoogle Scholar
  8. 8.
    Chatterjee, R., Marscher, A.P., Jorstad, S.G., Olmstead, A.R., McHardy, I.M., et al.: Disk-jet connection in the radio galaxy 3C 120. Astrophys. J. 704, 1689 (2009)CrossRefADSGoogle Scholar
  9. 9.
    Chatterjee, R., et al.: Connection between the accretion disk and jet in the radio Galaxy 3C 111. Astrophys. J. 734, 43 (2011)CrossRefADSGoogle Scholar
  10. 10.
    Corbel, S., Nowak, M.A., Fender, R.P., Tzioumis, A.K., Markoff, S.: Radio/X-ray correlation in the low/hard state of GX 339-4. Astron. Astrophys. 400, 1007 (2003)CrossRefADSGoogle Scholar
  11. 11.
    Corbel, S., Coriat, M., Brocksopp, C., Tzioumis, A.K., Fender, R.P., Tomsick, J.A., Buxton, M.M., Bailyn, C.D.: The ‘universal’ radio/X-ray flux correlation: the case study of the black hole GX 339–4. Mon. Not. R. Astron. Soc. 428, 2500 (2013)CrossRefADSGoogle Scholar
  12. 12.
    Coriat, M., et al.: Radiatively efficient accreting black holes in the hard state: the case study of H1743-322. Mon. Not. R. Astron. Soc. 414, 677 (2011)CrossRefADSGoogle Scholar
  13. 13.
    Coriat, M., Fender, R.P., Dubus, G.: Revisiting a fundamental test of the disc instability model for X-ray binaries. Mon. Not. R. Astron. Soc. 424, 1991 (2012)CrossRefADSGoogle Scholar
  14. 14.
    Demorest, P.B., Pennucci, T., Ransom, S.M., Roberts, M.S.E., Hessels, J.W.T.: A two-solar-mass neutron star measured using Shapiro delay. Nature 467, 1081 (2010)CrossRefADSGoogle Scholar
  15. 15.
    Díaz Trigo, M., Parmar, A.N., Boirin, L., Méndez, M., Kaastra, J. S.: Spectral changes during dipping in low-mass X-ray binaries due to highly-ionized absorbers. Astron. Astrophys. 445, 179 (2006)CrossRefADSGoogle Scholar
  16. 16.
    Díaz Trigo, M., Boirin L.: Disc atmospheres and winds in X-ray binaries. Acta Polytech. 53, 659 (2013)CrossRefADSGoogle Scholar
  17. 17.
    Done, C., Gierliński, M.: Observing the effects of the event horizon in black holes. Mon. Not. R. Astron. Soc. 342, 1041 (2003)CrossRefADSGoogle Scholar
  18. 18.
    Esin, A.A., McClintock, J.E., Narayan, R.: Advection-dominated accretion and the spectral states of black hole X-ray binaries: application to Nova Muscae 1991. Astrophys. J. 489, 865 (1997)Google Scholar
  19. 19.
    Fabian, A.: Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455 (2012)CrossRefADSGoogle Scholar
  20. 20.
    Falcke, H., Körding, E., Markoff, S.: A scheme to unify low-power accreting black holes. Jet-dominated accretion flows and the radio/X-ray correlation. Astron. Astrophys. 414, 895 (2004)Google Scholar
  21. 21.
    Fender, R., Belloni, T.: GRS 1915+105 and the disc-jet coupling in accreting black hole systems. Annu. Rev. Astron. Astrophys. 42, 317 (2004)CrossRefADSGoogle Scholar
  22. 22.
    Fender, R.P., Belloni, T.M.: Stellar-mass black holes and ultraluminous X-ray sources. Science 337, 540 (2012)CrossRefADSGoogle Scholar
  23. 23.
    Fender, R., Gallo, E., Jonker, J.: Jet-dominated states: an alternative to advection across black hole event horizons in ‘quiescent’ X-ray binaries. Mon. Not. R. Astron. Soc. 343, L99 (2003)CrossRefADSGoogle Scholar
  24. 24.
    Fender, R.P., Pooley, G.G.: Giant repeated ejections from GRS 1915+105. Mon. Not. R. Astron. Soc. 318, L1 (2000)CrossRefADSGoogle Scholar
  25. 25.
    Fender, R.P., Garrington, S.T., McKay, D.J., Muxlow, T.W.B., Pooley, G.G., Spencer, R.E., Stirling, A.M., Waltman, E.B.: MERLIN observations of relativistic ejections from GRS 1915+105. Mon. Not. R. Astron. Soc. 304, 865 (1999)CrossRefADSGoogle Scholar
  26. 26.
    Fender, R.P., Belloni, T.M., Gallo, E.: Towards a unified model for black hole X-ray binary jets. Mon. Not. R. Astron. Soc. 355, 1105 (2004a)CrossRefADSGoogle Scholar
  27. 27.
    Fender, R.P., Wu, K., Johnston, H., Tzioumius, T., Jonker, P., Spencer, R., van der Klis, M.: An ultra-relativistic outflow from a neutron star accreting gas from a companion. Nature 427, 222 (2004b)CrossRefADSGoogle Scholar
  28. 28.
    Fender, R.P., Gallo, E., Russell, D.: No evidence for black hole spin powering of jets in X-ray binaries. Mon. Not. R. Astron. Soc. 406, 1425 (2010)ADSGoogle Scholar
  29. 29.
    Fender, R.P., Homan, J., Belloni, T.M.: Jets from black hole X-ray binaries: testing, refining and extending empirical models for the coupling to X-rays. Mon. Not. R. Astron. Soc. 396, 1370 (2009)CrossRefADSGoogle Scholar
  30. 30.
    Feng, Y., Narayan, R.: Hot accretion flows around black holes. Annu. Rev. Astron. Astrophys. 52, 529 (2014)CrossRefADSGoogle Scholar
  31. 31.
    Gallo, E., Fender, R.P., Pooley, G.G.: A universal radio-X-ray correlation in low/hard state black hole binaries. Mon. Not. R. Astron. Soc. 344, 60 (2003)CrossRefADSGoogle Scholar
  32. 32.
    Gallo, E., Fender, R.P., Miller-Jones, J.C.A., Merloni, A., Jonker, P.G., Heinz, S., Maccarone, T.J., van der Klis, M.: A radio-emitting outflow in the quiescent state of A0620-00: implications for modelling low-luminosity black hole binaries. Mon. Not. R. Astron. Soc. 370, 1351 (2006)CrossRefADSGoogle Scholar
  33. 33.
    Ghisellini, G., Tavecchio, F., Maraschi, L., Celotti, A., Sharrato, T.: The power of relativistic jets is larger than the luminosity of their accretion disks. Nature 515, 376 (2014)CrossRefADSGoogle Scholar
  34. 34.
    Harmon, B.A., Wilson, C.A., Zhang, S.N., Paciesas, W.S., Fishman, G.J., Hjellming, R.M., Rupen, M.P., Scott, D.M., Briggs, M.S., Rubin, B.C.: Correlations between X-ray outbursts and relativistic ejections in the X-ray transient GRO J1655 - 40. Nature 374, 703 (1995)CrossRefADSGoogle Scholar
  35. 35.
    Hasinger, G., van der Klis, M.: Two patterns of correlated X-ray timing and spectral behaviour in low-mass X-ray binaries. Astron. Astrophys. 225, 79 (1989)ADSGoogle Scholar
  36. 36.
    Ho, L.: On the relationship between radio emission and black hole mass in galactic nuclei. Astrophys. J. 564, 120 (2002)CrossRefADSGoogle Scholar
  37. 37.
    Hynes, R.I., Haswell, C.A., Cui, W., Shrader, C.R., OB́rien, K., Chaty, S., Skillman, D.R., Patterson, J., Horne, K.: The remarkable rapid X-ray, ultraviolet, optical and infrared variability in the black hole XTE J1118+480. Mon. Not. R. Astron. Soc. 345, 292 (2003)Google Scholar
  38. 38.
    Ichimaru, S.: Bimodal behavior of accretion disks - theory and application to Cygnus X-1 transitions. Astrophys. J. 214, 840 (1977)CrossRefADSGoogle Scholar
  39. 39.
    Kallman, T., Bautista, M.: Photoionization and high-density gas. Astrophys. J. Suppl. Ser. 133, 221 (2001)CrossRefADSGoogle Scholar
  40. 40.
    Klein-Wolt, M., Fender, R.P., Pooley, G.G., Belloni, T., Migliari, S., Morgan, E.H., van der Klis, M.: Hard X-ray states and radio emission in GRS 1915+105. Mon. Not. R. Astron. Soc. 331, 745 (2002)CrossRefADSGoogle Scholar
  41. 41.
    Körding, E.G., Fender, R.P., Migliari, S.: Jet-dominated advective systems: radio and X-ray luminosity dependence on the accretion rate. Mon. Not. R. Astron. Soc. 369, 1451 (2006)CrossRefADSGoogle Scholar
  42. 42.
    Körding, E., Falcke, H., Corbel, S.: Refining the fundamental plane of accreting black holes. Astron. Astrophys. 456, 439 (2006)CrossRefADSzbMATHGoogle Scholar
  43. 43.
    Körding, E., Jester, S., Fender, R.P.: Accretion states and radio loudness in active galactic nuclei: analogies with X-ray binaries. Mon. Not. R. Astron. Soc. 372, 1366 (2006)CrossRefADSGoogle Scholar
  44. 44.
    Körding, E., Rupen, M., Knigge, C., Fender, R., Dhawan, V., Templeton, M., Muxlow, T.: A transient radio jet in an erupting dwarf nova. Science 320, 1318 (2008)CrossRefADSGoogle Scholar
  45. 45.
    Lee, J.C., Reynolds, C.S., Remillard, R., Schulz, N.S., Blackman, E.G., Fabian, A.C.: High-resolution Chandra HETGS and Rossi X-ray timing explorer observations of GRS 1915+105: a hot disk atmosphere and cold gas enriched in iron and silicon. Astrophys. J. 567, 1102 (2002)CrossRefADSGoogle Scholar
  46. 46.
    Lin, D.N.C., Papaloizou, J.C.B.: Theory of accretion disks II: application to observed systems. Annu. Rev. Astron. Astrophys. 34, 703 (1996)CrossRefADSGoogle Scholar
  47. 47.
    Lin, D., Remillard, R.A., Homan, J.: Evaluating spectral models and the X-ray states of neutron star X-ray transients. Astrophys. J. 667, 1073 (2007)CrossRefADSGoogle Scholar
  48. 48.
    Lin, D., Remillard, R.A., Homan, J.: Spectral states of XTE J1701 - 462: link between Z and atoll sources. Astrophys. J. 696, 1257 (2009)CrossRefADSGoogle Scholar
  49. 49.
    Lohfink, A.M., et al.: An X-ray view of the jet cycle in the radio-loud AGN 3C120. Astrophys. J. 772, L83 (2013)CrossRefADSGoogle Scholar
  50. 50.
    Longair, M.S.: Stars, the Galaxy and the Interstellar Medium. High Energy Astrophysics, vol. 2 (1994). Cambridge University Press, Cambridge (2011)Google Scholar
  51. 51.
    Luketic, S., Proga, D., Kallman, T.R., Raymond, J.C., Miller, J.M.: On the properties of thermal disk winds in X-ray transient sources: a case study of GRO J1655-40. Astrophys. J. 719, 515 (2010)CrossRefADSGoogle Scholar
  52. 52.
    Mahadevan, R.: Scaling laws for advection-dominated flows: applications to low-luminosity galactic nuclei. Astrophys. J. 477, 585 (1997)CrossRefADSGoogle Scholar
  53. 53.
    Marscher, A.P., Jorstad, S., Gomez, J.L., Aller, M.F., Terasranta, H., Lister, M.L., Stirling, A.M.: Observational evidence for the accretion-disk origin for a radio jet in an active galaxy. Nature 417, 625 (2002)CrossRefADSGoogle Scholar
  54. 54.
    McClintock, J.E., Narayan, R., Steiner, J.F.: Black hole spin via continuum fitting and the role of spin in powering transient jets. Space Sci. Rev. 183, 295 (2014)CrossRefADSGoogle Scholar
  55. 55.
    McHardy, I., Körding, E., Knigge, C., Uttley, P., Fender, R.: Active galactic nuclei as scaled-up Galactic black holes. Nature 444, 730 (2006)CrossRefADSGoogle Scholar
  56. 56.
    McNamara, B.R., Nulsen, P.E.J.: Heating hot atmospheres with active galactic nuclei. Annu. Rev. Astron. Astrophys. 45, 117 (2007)CrossRefADSGoogle Scholar
  57. 57.
    Merloni, A., Heinz, S.: Measuring the kinetic power of active galactic nuclei in the radio mode. Mon. Not. R. Astron. Soc. 381, 589 (2007)CrossRefADSGoogle Scholar
  58. 58.
    Merloni, A., Heinz, S., di Matteo, T.: A fundamental plane of black hole activity. Mon. Not. R. Astron. Soc. 345, 1057 (2003)CrossRefADSGoogle Scholar
  59. 59.
    Middleton, M.J., Miller-Jones, J.C.A., Markoff, S., Fender, R., et al.: Bright radio emission from an ultraluminous stellar-mass microquasar in M 31. Mon. Not. R. Astron. Soc. 439, 1740 (2013)CrossRefADSGoogle Scholar
  60. 60.
    Migliari, S., Fender, R.P.: Jets in neutron star X-ray binaries: a comparison with black holes. Mon. Not. R. Astron. Soc. 366, 79 (2006)CrossRefADSGoogle Scholar
  61. 61.
    Migliari, S., Fender, R.P., Rupen, M., Jonker, P.G., Klein-Wolt, M., Hjellming, R.M., van der Klis, M.: Disc-jet coupling in an atoll-type neutron star X-ray binary: 4U 1728-34 (GX 354-0). Mon. Not. R. Astron. Soc. 342, L67 (2003)CrossRefADSGoogle Scholar
  62. 62.
    Miller, J.M.: Annu. Rev. Astron. Astrophys. 45, 441 (2007)CrossRefADSGoogle Scholar
  63. 63.
    Miller, J.M., Raymond, J., Fabian, A., Steeghs, D., Homan, J., Reynolds, C., van der Klis, M., Wijnands, R.: The magnetic nature of disk accretion onto black holes. Nature 441, 953 (2006)CrossRefADSGoogle Scholar
  64. 64.
    Miller-Jones, J.C.A., McCormick, D.G., Fender, R.P., Spencer, R.E., Muzlow, T.W.B., Pooley, G.G.: Multiple relativistic outbursts of GRS1915+105: radio emission and internal shocks. Mon. Not. R. Astron. Soc. 363, 867 (2005)CrossRefADSGoogle Scholar
  65. 65.
    Miller-Jones, J.C.A., Moin, A., Tingay, S.J., Reynolds, C., Phillips, C.J., Tziounmis, A.K., Fender, R.P., McCallum, J.N., Nicolson, G.D., Tudose, V.: The first resolved imaging of milliarcsecond-scale jets in Circinus X-1. Mon. Not. R. Astron. Soc. 419, 49 (2012a)CrossRefADSGoogle Scholar
  66. 66.
    Miller-Jones, J.C.A., et al.: Disc-jet coupling in the 2009 outburst of the black hole candidate H1743-322. Mon. Not. R. Astron. Soc. 421, 468 (2012b)ADSGoogle Scholar
  67. 67.
    Mirabel, I.F., Rodriguez, L.F.: A superluminal source in the galaxy. Nature 371, 46 (1994)CrossRefADSGoogle Scholar
  68. 68.
    Mitsuda, K., Inoue, H., Nakamura, N., Tanaka, Y.: Luminosity-related changes of the energy spectrum of X1608-522. Publ. Astron. Soc. Jpn. 41, 97 (1989)ADSGoogle Scholar
  69. 69.
    Motta, S.E., Belloni, T.M., Stella, L., Muñoz-Darias, T., Fender, R.: Precise mass and spin measurements for a stellar-mass black hole through X-ray timing: the case of GRO J1655–40. Mon. Not. R. Astron. Soc. 437, 2554 (2014a)CrossRefADSGoogle Scholar
  70. 70.
    Motta, S.E., Muñoz-Darias, T., Sanna, A., Fender, R., Belloni, T., Stella, L.: Black hole spin measurements through the relativistic precession model: XTE J1550–564. Mon. Not. R. Astron. Soc. 439, L65 (2014b)CrossRefADSGoogle Scholar
  71. 71.
    Muñoz-Darias, T., Motta, S., Belloni, T.M.: Fast variability as a tracer of accretion regimes in black hole transients. Mon. Not. R. Astron. Soc. 410, 679 (2011)CrossRefADSGoogle Scholar
  72. 72.
    Muñoz-Darias, T., Fender, R.P., Motta, S.E., Belloni, T.M.: Black hole-like hysteresis and accretion states in neutron star low-mass X-ray binaries. Mon. Not. R. Astron. Soc. 443, 3270 (2014)CrossRefADSGoogle Scholar
  73. 73.
    Narayan, R., McClintock, J.E.: Observational evidence for a correlation between jet power and black hole spin. Mon. Not. R. Astron. Soc. 419, L69 (2012)CrossRefADSGoogle Scholar
  74. 74.
    Neilsen, J., Lee, J.C.: Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105. Nature 458, 481 (2009)CrossRefADSGoogle Scholar
  75. 75.
    Neilsen, J., Remillard, R.A., Lee, J.C.: The physics of the “Heartbeat” state of GRS 1915+105. Astrophys. J. 737, 69 (2011)CrossRefADSGoogle Scholar
  76. 76.
    Özel, D., Psaltis, D., Narayan, R., McClintock, J.: The black hole mass distribution in the galaxy. Astrophys. J. 725, 1918 (2010)CrossRefADSGoogle Scholar
  77. 77.
    Papaloizou, J.C.B., Lin, D.N.C.: Theory Of accretion disks I: angular momentum transport processes. Annu. Rev. Astron. Astrophys. 33, 505 (1995)CrossRefADSGoogle Scholar
  78. 78.
    Plant, D.S., Fender, R.P., Ponti, G., Muñoz-Darias, T., Coriat, M.: Revealing accretion on to black holes: X-ray reflection throughout three outbursts of GX 339–4. Mon. Not. R. Astron. Soc. 442, 1767 (2014)CrossRefADSGoogle Scholar
  79. 79.
    Plotkin, R., Markoff, S., Kelly, B.C., Körding, E., Anderson, S.F.: Using the fundamental plane of black hole activity to distinguish X-ray processes from weakly accreting black holes. Mon. Not. R. Astron. Soc. 419, 276 (2012)CrossRefADSGoogle Scholar
  80. 80.
    Ponti, G., Fender, R.P., Begelman, M.C., Dunn, R.J.H., Neilsen, J., Coriat, M.: Ubiquitous equatorial accretion disc winds in black hole soft states. Mon. Not. R. Astron. Soc. 422, L11 (2012)CrossRefADSGoogle Scholar
  81. 81.
    Ponti, G., Muñoz-Darias, T., Fender, R.P.: A connection between accretion state and Fe K absorption in an accreting neutron star: black hole-like soft-state winds? Mon. Not. R. Astron. Soc. 444, 1829 (2014)CrossRefADSGoogle Scholar
  82. 82.
    Ponti, G., Bianchi, S., Muñoz-Darias, T., De Marco, B., Dwelly, T., Fender, R.P., Nandra, K., Rea, N., Mori, K., Haggard, D., Heinke, C.O., Degenaar, N., Aramaki, T., Clavel, M., Goldwurm, A., Hailey, C.J., Israel, G.L., Morris, M.R., Rushton, A., Terrier, R.: On the Fe K absorption - accretion state connection in the galactic centre neutron star X-ray binary AX J1745.6-2901. Mon. Not. R. Astron. Soc. 446, 1536 (2015)Google Scholar
  83. 83.
    Pringle, J.E., Rees, M.J.: Accretion disc models for compact X-ray sources. Astron. Astrophys. 21, 1 (1972)ADSGoogle Scholar
  84. 84.
    Psaltis, D.: Probes and tests of strong-field gravity with observations in the electromagnetic spectrum. Living Rev. Relativ. 11, 9 (2008)CrossRefADSGoogle Scholar
  85. 85.
    Rees, M.J., Begelman, M.C., Blandford, R.D., Phinney, E.S.: Ion-supported tori and the origin of radio jets. Nature 295, 17 (1982)CrossRefADSGoogle Scholar
  86. 86.
    Reynolds, C.S.: Measuring black hole spin using X-ray reflection spectroscopy. Space Sci. Rev. 183, 277 (2014)CrossRefADSGoogle Scholar
  87. 87.
    Russell, D.M., Maccarone, T.J., Körding, E.G., Homan, J.: Parallel tracks in infrared versus X-ray emission in black hole X-ray transient outbursts: a hysteresis effect?. Mon. Not. R. Astron. Soc. 379, 1401 (2007)CrossRefADSGoogle Scholar
  88. 88.
    Russell, D.M., Miller-Jones, J.C.A., Maccarone, T.J., Yang, Y.J., Fender, R.P., Lewis, F.: Testing the jet quenching paradigm with an ultradeep observation of a steadily soft state black hole. Mon. Not. R. Astron. Soc. 739, L19 (2011)ADSGoogle Scholar
  89. 89.
    Russell, D.M., Gallo, E., Fender, R.P.: Observational constraints on the powering mechanism of transient relativistic jets. Mon. Not. R. Astron. Soc. 431, 405 (2013)CrossRefADSGoogle Scholar
  90. 90.
    Shakura, N.I., Sunyaev, R.A.: Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337 (1973)ADSGoogle Scholar
  91. 91.
    Sikora, M., Stawarz, L., Lasota, J.-P.: Radio loudness of active galactic nuclei: observational facts and theoretical implications. Astrophys. J. 658, 815 (2007)CrossRefADSGoogle Scholar
  92. 92.
    Soltan, A.: Masses of quasars. Mon. Not. R. Astron. Soc. 200, 115 (1982)CrossRefADSGoogle Scholar
  93. 93.
    Steiner, J.F., McClintock, J.E., Narayan, R.: Astrophys. J. 762, 104 (2013)CrossRefADSGoogle Scholar
  94. 94.
    Sunyaev, R.A., Shakura, N.I.: Disk accretion onto a weak field neutron star - boundary layer disk luminosity ratio. Sov. Astron. Lett. 12, 117 (1986)ADSGoogle Scholar
  95. 95.
    Tarter, C.B., Tucker, W.H., Salpeter, E.E.: The interaction of X-ray sources with optically thin environments. Astrophys. J. 156, 943 (1969)CrossRefADSGoogle Scholar
  96. 96.
    Van den Heuvel, E.: Endpoints of stellar evolution: the incidence of stellar mass black holes in the galaxy. In: ESA, Environment Observation and Climate Modelling Through International Space Projects. Space Sciences with Particular Emphasis on High-Energy Astrophysics, pp. 29–36 (SEE N93-23878 08-88) (1992)Google Scholar
  97. 97.
    van der Klis, M.: Rapid X-ray variability. In: Compact Stellar X-ray Sources. Cambridge Astrophysics Series, vol. 39. Cambridge University Press, Cambridge (2006)Google Scholar
  98. 98.
    White, N.E., Stella, L., Parmar, A.N.: The X-ray spectral properties of accretion discs in X-ray binaries. Astrophys. J. 324, 363 (1988)CrossRefADSGoogle Scholar
  99. 99.
    Wijnands, R., van der Klis, M.: The broadband power spectra of X-ray binaries. Astrophys. J. 514, 939 (1999)CrossRefADSGoogle Scholar
  100. 100.
    Yungelson, L.R., Lasota, J.-P., Nelemans, G., et al.: The origin and fate of short-period low-mass black-hole binaries. Astron. Astrophys. 454, 559 (2006)CrossRefADSGoogle Scholar
  101. 101.
    Zdziarski, A.A.: The jet kinetic power, distance and inclination of GRS 1915+105. Mon. Not. R. Astron. Soc. 444, 1113 (2014a)CrossRefADSGoogle Scholar
  102. 102.
    Zdziarski, A.A.: The minimum jet power and equipartition. Mon. Not. R. Astron. Soc. 445, 1321 (2014b)CrossRefADSGoogle Scholar
  103. 103.
    Zhang, S.N., Cui, W., Harmon, B.A., Paciesas, W.S., Remillard, R.E., van Paradijs, J.: The 1996 soft state transition of Cygnus X-1. Astrophys. J. 477, L95 (1997)CrossRefADSGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Astrophysics, Department of PhysicsUniversity of OxfordOxfordUK
  2. 2.Departamento de Astrofísica, Instituto de Astrofísica de CanariasUniversidad de La LagunaSan Cristóbal de La LagunaSpain

Personalised recommendations