Skip to main content

Complex Au/FeO\(_{x}\) Nanostructures Obtained from Annealed Bilayers

  • Chapter
  • First Online:
Modified Au-Based Nanomaterials Studied by Surface Plasmon Resonance Spectroscopy

Part of the book series: Springer Theses ((Springer Theses))

  • 633 Accesses

Abstract

This chapter presents the fabrication of complex nanoparticles from Au/Fe bilayers, under various configurations and annealing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.V. Uwe Kreibig, Optical properties of metal clusters, springer series in material science, vol. 25 (Springer, Berlin, 1995)

    Google Scholar 

  2. A. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251), 933–937 (1996)

    Article  ADS  Google Scholar 

  3. P. Tartaj, M. Morales, T. Gonzalez-Carreño, S. Veintemillas-Verdaguer, C. Serna, The iron oxides strike back: from biomedical applications to energy storage devices and photoelectrochemical water splitting. Adv. Mater. 23(44), 5243–5249 (2011)

    Article  Google Scholar 

  4. S. Chatterjee, A. Bandyopadhyay, K. Sarkar, Effect of iron oxide and gold nanoparticles on bacterial growth leading towards biological application. J. Nanobiotechnol. 9, (2011)

    Google Scholar 

  5. Y. Lee, M. Garcia, N. Frey Huls, S. Sun, Synthetic tuning of the catalytic properties of au-fe3o 4 nanoparticles. Angew. Chem. Int. Ed. 49(7), 1271–1274 (2010)

    Google Scholar 

  6. M. Grzelczak, J. Pérez-Juste, P. Mulvaney, L. Liz-Marzá, Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37(9), 1783–1791 (2008)

    Article  Google Scholar 

  7. H.L. Liu, J.H. Wu, J.H. Min, Y.K. Kim, Synthesis of monosized magnetic-optical aufe alloy nanoparticles. J. Appl. Phys. 103, 707D529 (2008)

    Google Scholar 

  8. H.-Y. Park, M.J. Schadt, L. Wang, I.-I.S. Lim, P.N. Njoki, S.H. Kim, M.-Y. Jang, J. Luo, C.-J. Zhong, Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation. Langmuir: ACS J. Surf. Colloids 23(17), 9050–9056 (2007)

    Article  Google Scholar 

  9. R.S. Kane, Fabricating complex polymeric micro- and nanostructures: lithography in microfluidic devices. Angew. Chem. (Int. Ed. Engl.) 47(8), 1368–1370 (2008)

    Article  Google Scholar 

  10. A.E.B. Presland, G.L. Price, D.L. Trimm, Hillock formation by surface diffusion on thin silver films. Surf. Sci. 29(2), 424–434 (1972)

    Article  ADS  Google Scholar 

  11. M.S. Rahman Khan, Hillock and island formation during annealing of gold films. Bull. Mater. Sci. 9, 55–60 (1987)

    Article  Google Scholar 

  12. M.S. Jackson, C.-Y. Li, Stress relaxation and hillock growth in thin films. Acta Metall. 30(11), 1993–2000 (1982)

    Article  Google Scholar 

  13. C.V. Thompson, Solid-State dewetting of thin films. Ann. Rev. Mater. Res. 42(1), 399–434 (2012)

    Article  ADS  Google Scholar 

  14. J.A. Thornton, D.W. Hoffman, Stress-related effects in thin films. Thin Solid Films 171(1), 5–31 (1989)

    Article  ADS  Google Scholar 

  15. I. Doron-Mor, Z. Barkay, N. Filip-Granit, A. Vaskevich, I. Rubinstein, Ultrathin gold island films on silanized glass. morphology and optical properties. Chem. Mater. 16(18), 3476–3483 (2004)

    Article  Google Scholar 

  16. S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101(9), 093105 (2007)

    Article  ADS  Google Scholar 

  17. S. Aggarwal, A. Monga, S. Perusse, R. Ramesh, V. Ballarotto, E. Williams, B. Chalamala, Y. Wei, R. Reuss, Spontaneous ordering of oxide nanostructures. Science 287(5461), 2235–2237 (2000)

    Article  ADS  Google Scholar 

  18. S. Aggarwal, S. Ogale, C. Ganpule, S. Shinde, V. Novikov, A. Monga, M. Burr, R. Ramesh, V. Ballarotto, E. Williams, Oxide nanostructures through self-assembly. Appl. Phys. Lett. 78(10), 1442–1444 (2001)

    Article  ADS  Google Scholar 

  19. S. Shinde, A. Ogale, S. Ogale, S. Aggarwal, V. Novikov, E. Williams, R. Ramesh, Self-organized pattern formation in the oxidation of supported iron thin films. I. An experimental study. Phys. Rev. B 64(3), 1–5 (2001)

    Article  Google Scholar 

  20. M.A. Garcia, Surface plasmons in metallic nanoparticles: fundamentals and applications. J. Phys. D: Appl. Phys. 44(28), 283001 (2011)

    Article  Google Scholar 

  21. R.M. Cornell, U. Schwertmann, The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses, 2nd edn. (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2003)

    Book  Google Scholar 

  22. W.H. Hung, M. Aykol, D. Valley, W. Hou, S.B. Cronin, Plasmon resonant enhancement of carbon monoxide catalysis. Nano Lett. 10(4), 1314–1318 (2010)

    Article  ADS  Google Scholar 

  23. C. de Julián Fernández, G. Mattei, E. Paz, R. Novak, L. Cavigli, L. Bogani, F. Palomares, P. Mazzoldi, A. Caneschi, Coupling between magnetic and optical properties of stable au-fe solid solution nanoparticles. Nanotechnology 21, 16 (2010)

    Google Scholar 

  24. Y.S. Touloukian, R.K. Kirby, R.E. Taylor, P.D. Desai, Thermal Expansion: Metallic Elements and Alloys (Thermophysical Properties of Matter, vol. 12). IFI/Plenum. 1 edition, 1975

    Google Scholar 

  25. E.C. Romani, D. Vitoreti, P.M.P. Gouvêa, P.G. Caldas, R. Prioli, S. Paciornik, M. Fokine, A.M.B. Braga, A.S.L. Gomes, I.C.S. Carvalho, Gold nanoparticles on the surface of soda-lime glass: morphological, linear and nonlinear optical characterization. Opt. Express 20(5), 5429–5439 (2012)

    Article  ADS  Google Scholar 

  26. H. Nelson, The low temperature oxidation of iron. J. Chem. Phys. 6(10), 606–611 (1938)

    Article  ADS  Google Scholar 

  27. F. Kenfack, H. Langbein, Influence of the temperature and the oxygen partial pressure on the phase formation in the system Cu–Fe–O. Cryst. Res. Technol. 39(12), 1070–1079 (2004)

    Article  Google Scholar 

  28. G. Rhead, Surface self-diffusion of silver in various atmospheres. Acta Metall. 13(3), 223–226 (1965)

    Article  Google Scholar 

  29. S.K. Sharma, J. Spitz, Hillock formation, hole growth and agglomeration in thin silver films. Thin Solid Films 65(3), 339–350 (1980)

    Article  ADS  Google Scholar 

  30. B.E.H. Oswald Kubaschewski, Oxidation of metals and alloys (Butterworths, London, 1967)

    Google Scholar 

  31. See http://www.jobinyvon.com/usadivisions/Raman/applications/Fluorescence01.pdf

  32. T. Hasegawa, J. Nishijo, J. Umemura, Separation of raman spectra from fluorescence emission background by principal component analysis. Chem. Phys. Lett. 317(6), 642–646 (2000)

    Article  ADS  Google Scholar 

  33. D.L.A. de Faria, S. Venancio Silva, M.T. De Oliveira, Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 28(11), 873–878 (1997)

    Google Scholar 

  34. K. McCarty, Inelastic light scattering in \(\alpha \)-Fe\(_{2}\)O\(_{3}\): phonon vs magnon scattering. Solid State Commun. 68(8), 799–802 (1988)

    Article  ADS  Google Scholar 

  35. H. Cao, G. Wang, L. Zhang, Y. Liang, S. Zhang, X. Zhang, Shape and magnetic properties of single-crystalline hematite (alpha-Fe\(_{2}\)O\(_{3}\)) nanocrystals. Chemphyschem: Eur. J. Chem. Phys. Phys. Chem. 7(9), 1897–1901 (2006)

    Article  Google Scholar 

  36. I. Cesar, K. Sivula, A. Kay, R. Zboril, M. Gratzel, Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 113(2), 772–782 (2009)

    Article  Google Scholar 

  37. T. Martin, R. Merlin, D. Huffman, M. Cardona, Resonant two magnon Raman scattering in \(\alpha \)-Fe\(_{2}\)O\(_{3}\). Solid State Commun. 22(9), 565–567 (1977)

    Article  ADS  Google Scholar 

  38. D. Bersani, P. Lottici, A. Montenero, Micro-raman investigation of iron oxide films and powders produced by sol-gel syntheses. J. Raman Spectrosc. 30(5), 355–360 (1999). cited By (since 1996)154

    Google Scholar 

  39. F.J. Owens, J. Orosz, Effect of nanosizing on lattice and magnon modes of hematite. Solid State Commun. 138(2), 95–98 (2006)

    Article  ADS  Google Scholar 

  40. M. Lübbe, A.M. Gigler, R.W. Stark, W. Moritz, Identification of iron oxide phases in thin films grown on Al\(_{2}\)O\(_{3}\)(0001) by Raman spectroscopy and X-ray diffraction. Surf. Sci. 604(7–8), 679–685 (2010)

    Article  ADS  Google Scholar 

  41. I.V. Chernyshova, M.F. Hochella Jr, A.S. Madden, Size-dependent structural transformations of hematite nanoparticles. 1. Phase transition. Phys. Chem. Chem. Phys. 9(14), 1736–1750 (2007)

    Article  Google Scholar 

  42. M. Legodi, D. Dewaal, The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste. Dyes Pigm. 74(1), 161–168 (2007)

    Article  Google Scholar 

  43. A.M. Jubb, H.C. Allen, Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Appl. Mater. Interfaces 2(10), 2804–2812 (2010)

    Article  Google Scholar 

  44. See http://www.flowmeterdirectory.com/dielectricconstant01.html

  45. M.A. García, J. Llopis, S.E. Paje, A simple model for evaluating the optical absorption spectrum from small au-colloids in sol-gel films. Chem. Phys. Lett. 315(5–6), 313–320 (1999)

    Article  ADS  Google Scholar 

  46. Y. He, Y. Miao, C. Li, S. Wang, L. Cao, S. Xie, G. Yang, B. Zou, C. Burda, Size and structure effect on optical transitions of iron oxide nanocrystals. Phys. Rev. B—Condens. Matter Mater. Phys. 71(12), (2005)

    Google Scholar 

  47. C. Yan, Y. Chen, A. Jin, M. Wang, X. Kong, X. Zhang, Y. Ju, L. Han, Molecule oxygen-driven shaping of gold islands under thermal annealing. Appl. Surf. Sci. 258(1), 377–381 (2011)

    Article  ADS  Google Scholar 

  48. M. Hanesch, Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int. 177(3), 941–948 (2009)

    Article  ADS  Google Scholar 

  49. N. Boucherit, A.H.-L. Goff, S. Joiret, Raman studies of corrosion films grown on Fe and Fe-6Mo in pitting conditions. Corros. Sci. 32, 497–507 (1991)

    Article  Google Scholar 

  50. A. Demoulin, C. Trigance, D. Neff, E. Foy, P. Dillmann, V. L’Hostisd, The evolution of the corrosion of iron in hydraulic binders analysed from 46- and 260-year-old buildings. Corros. Sci. 52(10), 3168–3179 (2010)

    Article  Google Scholar 

  51. T. Ohtsuka, K. Kubo, N. Sato, Raman spectroscopy of thin corrosion films on iron at 100 to 150 \(^{\circ }\)C in air. Corrosion-NACE 42(8), 476–481 (1986)

    Article  Google Scholar 

  52. I. Chamritski, G. Burns, Infrared- and Raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. J. Phys. Chem. B 109(11), 4965–4968 (2005)

    Article  Google Scholar 

  53. N.D. Phu, D.T. Ngo, L.H. Hoang, N.H. Luong, N. Chau, N.H. Hai, Crystallization process and magnetic properties of amorphous iron oxide nanoparticles. J. Phys. D: Appl. Phys. 44(34), 345002 (2011)

    Article  Google Scholar 

  54. A. Mooradian, Photoluminescence of metals. Phys. Rev. Lett. 22, 185–187 (1969)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aída Serrano Rubio .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Serrano Rubio, A. (2015). Complex Au/FeO\(_{x}\) Nanostructures Obtained from Annealed Bilayers. In: Modified Au-Based Nanomaterials Studied by Surface Plasmon Resonance Spectroscopy. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-19402-8_4

Download citation

Publish with us

Policies and ethics