Skip to main content

Lateral Phase Separation via Surface Bifurcation

  • Chapter
  • First Online:
Fundamentals of Phase Separation in Polymer Blend Thin Films

Part of the book series: Springer Theses ((Springer Theses))

  • 728 Accesses

Abstract

Diffusion simulations of polymer blend films with selectively attracting surfaces are used to identify the dynamics of lateral phase separation via a transient wetting layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Vertical Phase Separation: phase separation into vertically layered phases, e.g. a bilayer, usually caused by preferential surface attraction.

  2. 2.

    Lateral Phase Separation: phase separation into laterally coexisting phases, whether from an approximately homogeneous film or a bilayer film, resulting in a laterally segregated film.

  3. 3.

    Vertically Segregated (film): layered phases with interfaces parallel to the surfaces.

  4. 4.

    Laterally Segregated (film): ‘column’ phases with interfaces perpendicular to the surfaces.

  5. 5.

    Lateral Phase Separation via a Transient Wetting Layer: vertical phase separation initially proceeds, due to preferential surface attraction, resulting in a vertically segregated film. This state is unstable, and lateral phase separation occurs, resulting in a laterally segregated film.

  6. 6.

    Pinning: values of \((\phi ,2\kappa \nabla _z\phi )\) at the film surfaces are determined by surface boundary conditions, such that the ends of trajectories are always pinned to these boundary conditions.

  7. 7.

    Surface Bifurcation: mechanism explaining the dynamics of lateral phase separation via a transient wetting layer, describing how the surface values \((\phi ,2\kappa \nabla _z\phi )\) of the TWL divide into two values that evolve towards those for laterally coexisting equilibria, whilst honouring the surface boundary conditions at all times throughout the entire process.

References

  1. S. Coveney, N. Clarke, Breakup of a transient wetting layer in polymer blend thin films: unification with 1D phase equilibria. Phys. Rev. Lett. 111(12), 125702 (2013)

    Article  ADS  Google Scholar 

  2. S. Coveney, N. Clarke, Lateral phase separation in polymer-blend thin films: surface bifurcation. Phys. Rev. E 89(6), 062603 (2014)

    Google Scholar 

  3. R.C. Ball, R.L.H. Essery, Spinodal decomposition and pattern formation near surfaces. J. Phys.: Condens. Matter 2, 10303 (1990)

    ADS  Google Scholar 

  4. R.A.L. Jones, L.J. Norton, E.J. Kramer, R.J. Composto, R.S. Stein, T.P. Russell, A. Mansour, A. Karim, G.P. Felcher, M.H. Rafailovich, J. Sokolov, X. Zhao, S.A. Schwarz, The form of the enriched surface layer in polymer blends. Europhys. Lett. 12(1), 41 (1990)

    Article  ADS  Google Scholar 

  5. S. Puri, K. Binder, Surface-directed spinodal decomposition: phenomenology and numerical results. Phys. Rev. A 46(8), R4487 (1992)

    Article  ADS  Google Scholar 

  6. G. Brown, A. Chakrabarti, Surface-directed spinodal decomposition in a two-dimensional model. Phys. Rev. A 46(8), 4829 (1992)

    Article  ADS  Google Scholar 

  7. J. Marko, Inuence of surface interactions on spinodal decomposition. Phys. Rev. E 48(4), 2861 (1993)

    Article  ADS  Google Scholar 

  8. S. Puri, K. Binder, Surface efiects on spinodal decomposition in binary mixtures and the interplay with wetting phenomena. Phys. Rev. E 49(6), 5359 (1994)

    Article  ADS  Google Scholar 

  9. W. Straub, F. Bruder, R. Brenn, G. Krausch, H. Bielefeldt, A. Kirsch, O. Marti, J. Mlynek, J.F. Marko, Transient wetting and 2D spinodal decomposition in a binary polymer blend. Europhys. Lett. 29, 353 (1995)

    Article  ADS  Google Scholar 

  10. S. Walheim, M. Bo, G. Krausch, U. Steiner, Structure formation via polymer demixing in spin-cast films. Macromolecules 30(96), 4995 (1997)

    Article  ADS  Google Scholar 

  11. S.Y. Heriot, R.A.L. Jones, An interfacial instability in a transient wetting layer leads to lateral phase separation in thin spin-cast polymerblend films. Nat. Mater. 4(10), 782 (2005)

    Article  ADS  Google Scholar 

  12. M. Souche, N. Clarke, Interfacial instability in bilayer films due to solvent evaporation. Eur. Phys. J. E Soft Matter 28(1), 47 (2009)

    Article  Google Scholar 

  13. A.D.F. Dunbar, P. Mokarian-Tabari, A.J. Parnell, S.J. Martin, M.W.A. Skoda, R.A.L. Jones, A solution concentration dependent transition from self-stratification to lateral phase separation in spin-cast PS:d-PMMA thin films. Eur. Phys. J. E Soft Matter 31(4), 369 (2010)

    Article  Google Scholar 

  14. P. Mokarian-Tabari, M. Geoghegan, J.R. Howse, S.Y. Heriot, R.L. Thompson, R.A.L. Jones, Quantitative evaluation of evaporation rate during spin-coating of polymer blend films: control of film structure through defined-atmosphere solvent-casting. Eur. Phys. J. E Soft Matter 33(4), 203 (2010)

    Article  Google Scholar 

  15. P.G. de Gennes, Dynamics of uctuations and spinodal decomposition in polymer blends. J. Chem. Phys. 72(9), 4756 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  16. H. Nakanishi, P. Pincus, Surface spinodals and extended wetting in uids and polymer solutions. J. Chem. Phys. 79(2), 997 (1983)

    Article  ADS  Google Scholar 

  17. I. Schmidt, K. Binder, Model calculations for wetting transitions in polymer mixtures. Journal de Physique 46, 1631 (1985)

    Article  Google Scholar 

  18. J.W. Cahn, Critical point wetting. J. Chem. Phys. 66(8), 3667 (1977)

    Article  ADS  Google Scholar 

  19. I.C. Henderson, N. Clarke, On modelling surface directed spinodal decomposition. Macromol. Theory Simul. 14(7), 435 (2005)

    Article  Google Scholar 

  20. J. Fukuda, M. Yoneya, H. Yokoyama, Numerical treatment of the dynamics of a conserved order paramater in the presence of walls. Phys. Rev. E 73 (2006)

    Google Scholar 

  21. M. Müller, K. Binder, E. Albano, Non-monotonous crossover between capillary condensation and interface localisation/delocalisation transition. Europhys. Lett. 50(6), 724 (2000)

    Article  ADS  Google Scholar 

  22. S. Coveney, N. Clarke, Surface roughening in polymer blend thin films by lateral phase separation: a thermodynamic mechanism. J. Chem. Phys. 137(17), 174901 (2012)

    Article  ADS  Google Scholar 

  23. A. Parry, R. Evans, Novel phase behaviour of a confined uid or Ising magnet. Phys. A: Stat. Mech. Appl. 181(3–4), 250 (1992)

    Article  Google Scholar 

  24. K. Binder, Modeling of wetting in restricted geometries. Annu. Rev. Mater. Res. 38(1), 123 (2008)

    Article  ADS  Google Scholar 

  25. S. Das, S. Puri, J. Horbach, K. Binder, Kinetics of phase separation in thin films: simulations for the difiusive case. Phys. Rev. E 72(6) (2005)

    Google Scholar 

  26. G.A. Buxton, N. Clarke, Ordering polymer blend morphologies via solvent evaporation. Europhys. Lett. 78(5), 56006 (2007)

    Google Scholar 

  27. M. Souche, N. Clarke, Equilibrium phases for thin films of polymer blend solutions. Macromolecules 43(12), 5433 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam Coveney .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Coveney, S. (2015). Lateral Phase Separation via Surface Bifurcation. In: Fundamentals of Phase Separation in Polymer Blend Thin Films. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-19399-1_5

Download citation

Publish with us

Policies and ethics