Skip to main content

Noise Decomposition Using Polynomial Approximation

  • Conference paper
  • First Online:
  • 3947 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9117))

Abstract

In some imaging modalities based on coherent radiation, the noise contaminating an image may contain useful information, thereby necessitating the separation of the noise field rather than just denoising. When the algebraic operation that relates the image and noise is known, the noise component can be estimated in a straightforward manner after denoising. However, for some statistical models such as Poisson noise, this algebraic relation is not known. In this paper, we propose a method for simultaneously estimating the image and separating the noise field, when we do not know the algebraic relation between them. It is assumed that the image is sparse and the noise field is not, and appropriate regularizers are used on them. We use a polynomial representation to relate the image and noise with the observed image, and iteratively estimate the polynomial coefficients, the image, and noise component. Experimental results show that the method correctly estimates the model coefficients and the estimated noise components follow their respective statistical distributions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aelterman, J., Goossens, B., Pizurica, A., Philips, W.: Removal of correlated rician noise in magnetic resonance imaging. In: Proceedings of EUSIPCO, vol. 2008 (2008)

    Google Scholar 

  2. Afonso, M., Bioucas-Dias, J., Figueiredo, M.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Im. Proc. 19(9), 2345–2356 (2010)

    Article  MathSciNet  Google Scholar 

  3. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20(1), 89–97 (2004)

    MathSciNet  Google Scholar 

  4. Coupé, P., Manjón, J.V., Gedamu, E., Arnold, D., Robles, M., Collins, D.L.: Robust Rician noise estimation for MR images. Med. Image Anal. 14(4), 93–483 (2010)

    Article  Google Scholar 

  5. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theor. 52(4), 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eckstein, J., Bertsekas, D.: On the DouglasRachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Program. 55(3), 293–318 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Goldstein, T., Osher, S.: The split Bregman method for \(\ell _1\) regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Hastie, T., Tibshirani, R., Friedman, J., Franklin, J.: The elements of statistical learning: data mining, inference and prediction. Math. Intelligencer 27(2), 83–85 (2005)

    Google Scholar 

  9. Michailovich, O., Tannenbaum, A.: Despeckling of medical ultrasound images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 64–78 (2006)

    Article  Google Scholar 

  10. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  11. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  12. Sanches, J.M., Figueiredo, J., Fonseca, M., Durães, C., Melo, S., Esménio, S., Seruca, R.: Quantification of mutant e-cadherin using bioimaging analysis of in situ fluorescence microscopy a new approach to cdh1 missense variants. Eur. J. Hum. Genet. (2014)

    Google Scholar 

  13. Seabra, J., Sanches, J.: Ultrasound speckle/despeckle image decomposition for tissue analysis. In: Sanches, J.M., Laine, A.F., Suri, J.S. (eds.) Ultrasound Imaging: Advances and Applications. Springer, New York (2012)

    Google Scholar 

  14. Seabra, J.C.R.: Medical ultrasound b-mode modeling, de-speckling and tissue characterization assessing the atherosclerotic disease, Ph.D. Dissertation, Instituto Superior Técnico, May 2011

    Google Scholar 

  15. Selesnick, I., Arnold, S., Dantham, V.: Polynomial smoothing of time series with additive step discontinuities. IEEE Trans. Sig. Process. 60(12), 6305–6318 (2012)

    Article  MathSciNet  Google Scholar 

  16. Selesnick, I.W.: Simultaneous polynomial approximation and total variation denoising. In: 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2013)

    Google Scholar 

  17. Radu, V., Yin, W., Osher, S., Goldfarb, D.: Bregman iterative algorithms for \(\ell _1\) minimization with applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundação para a Ciência e Tecnologia (FCT), Portuguese Ministry of Science and Higher Education, through a Post-doctoral fellowship (contract no. SFRH/BPD/79011/2011) and FCT project PEst-OE/EEI/LA0009/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manya Afonso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Afonso, M., Sanches, J.M. (2015). Noise Decomposition Using Polynomial Approximation. In: Paredes, R., Cardoso, J., Pardo, X. (eds) Pattern Recognition and Image Analysis. IbPRIA 2015. Lecture Notes in Computer Science(), vol 9117. Springer, Cham. https://doi.org/10.1007/978-3-319-19390-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19390-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19389-2

  • Online ISBN: 978-3-319-19390-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics