Skip to main content

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 6))

Abstract

For life sustainability water is an essential resource present on the earth. In the current era of economical growth, groundwater is getting polluted due to the various human activities, urbanization and industrialization in addition to geogenic contamination. Water contamination by toxic and hazardous heavy metals, inorganic and organic pollutants, is a widespread environmental problem and removal of these pollutants from contaminated water is a major scientific concern of research and development. Water remediation technology is the process that is used to remove various pollutants from contaminated water. Various remediation techniques such as ultrasonication, bioremediation and nano are used for water remediation. Redox processes are chemical reactions that proceed by transfer of electrons resulting in a change in oxidation state of elements that are either oxidized to a higher oxidation state or reduced to a lower oxidation state. The use of redox processes in water remediation technologies has not been properly reviewed till now even after its versatile applications in water remediation technologies. The chemical speciation, bioavailability, toxicity, mobility and suitability for biodegradation as well as adsorption for water pollutants in environment are directly affected by redox processes that occur in water.

Here, we present an overview on (1) general introduction of redox processes, (2) applicability of redox processes in water remediation, (3) catalytic enhancement of redox potentials to explore its wide applicability in environmental chemistry, (4) a brief comparative study of redox processes with some other water remediation technologies and (5) current and future prospective of redox processes in water remediation as well as in environmental remediation. Thus, scope of this review will provide a brief literature review of recent advances in redox processes in water remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acar YB, Alshawabkeh AN (1993) Principles of electrokinetic remediation. Environ Sci Technol 27(13):2638–2647. doi:10.1021/es00049a002

    Article  CAS  Google Scholar 

  • Ackermann S, Giere R, Newville M, Majzlan J (2009) Antimony sinks in the weathering crust of bullets from Swiss shooting ranges. Sci Total Environ 407:1669–1682. doi:10.1016/j.scitotenv.2008.10.059

    Article  CAS  Google Scholar 

  • Agrawal A, Tratnyek PG (1996) Reduction of nitro aromatic compounds by zero-valent iron metal. Environ Sci Technol 30(1):153–160. doi:10.1021/es950211h

    Google Scholar 

  • Allen J, Strobel GA (1966) The assimilation of HCN by a variety of fungi. Can J Microbiol 12:414–416

    Article  CAS  Google Scholar 

  • Amonette JE, Szecsody JE, Schaef HT, Templetion JC, Gorby YA, Fruchter JS (1994) Abiotic reduction of aquifer materials by dithionite: a promising in situ remediation technology. In: In situ remediation: scientific basis for current and future technologies, Proceedings of the 33rd Hanford symposium on health and environment, Battelle Press, Pasco/Washington/Columbus, 7–11 Nov

    Google Scholar 

  • Amonette JE, Workman DJ, Kennedy DW, Fruchter JS, Gorby YA (2000) Dechlorination of carbon tetrachloride by Fe(II) associated with goethite. Environ Sci Technol 34(21):4606–4613. doi:10.1021/es9913582

    Article  CAS  Google Scholar 

  • Archer GL (1995) Staphylococcus epidermidis and coagulase-negative staphylococci. In: Mandell GL, Bennett JE, Dolin R (eds) Mandell, Douglas, and Bennett’s Principles and practice of infectious diseases, 4th edn. Churchill Livingstone, New York, pp 1777–1780

    Google Scholar 

  • Avrahami M, Golding RM (1968) The oxidation of the sulphide ion at very low concentrations in aqueous solutions. J Chem Soc A 647–651. doi:10.1039/J19680000647

  • Badireddy AR, Hotze EM, Chellam S, Alvarez P, Wiesner MR (2007) Inactivation of bacteriophages via photosensitization of fullerol nanoparticles. Environ Sci Technol 41(18):6627–6632. doi:10.1021/es0708215

    Article  CAS  Google Scholar 

  • Basu A, Williams KR, Modak MJ (1987) Ferrate oxidation of Escherichia coli DNA polymerase-I. Identification of a methionine residue that is essential for DNA binding. J Biol Chem 262:9601–9607

    CAS  Google Scholar 

  • Baus C, Sona M, Brauch HJ (2007) Ozonation and combined ozone/H2O2, UV/ozone and UV/H2O2 for treatment of fuel oxygenates MTBE, ETBE, TAME, and DIPE from water – a comparison of removal efficiencies. Water Sci Technol 55:307–311. doi:10.2166/wst.2007.424

    Article  CAS  Google Scholar 

  • Bedner M, Maccrehan WA (2006) Transformation of acetaminophen by chlorination produces the toxicants 1,4-Benzoquinone and N-Acetyl-p-benzoquinone Imine. Environ Sci Technol 40:516–522. doi:10.1021/es0509073

    Article  CAS  Google Scholar 

  • Benabbou AK, Derriche Z, Felix C, Lejeune P, Guillard C (2007) Photocatalytic inactivation of Escherichia coli – effect of concentration of TiO2 and microorganism, nature, and intensity of UV irradiation. Appl Catal B 76:257–263. doi:10.1016/j.apcatb.2007.05.026

    Article  CAS  Google Scholar 

  • Blowes DW, Ptacek CJ, Bain JG, Waybrant KR, Robertson WD (1995) Treatment of mine drainage water using in-situ permeable reactive walls. In: Proceedings of sudbury’95, symposium on mining and the environment, Sudbury, 28 May–1 June 1995, vol 3, pp 979–987

    Google Scholar 

  • Bodek I, Lyman WJ, Reehl WF, Rosenblatt DH (1988) Environmental inorganic chemistry: properties, processes and estimation methods. Pergamon Press, Elmsford

    Google Scholar 

  • Borch T, Fendorf S (2008) Phosphate interactions with iron hydroxides: mineralization pathways and phosphorus retention upon bioreduction. In: Barnett MO, Kent DB (eds) Adsorption of metals by Geomedia II: variables, mechanisms, and model applications, vol 7, 1st edn. Elsevier, Amsterdam, pp 321–348

    Google Scholar 

  • Borch T, Inskeep WP, Harwood JA, Gerlach R (2005) Impact of ferrihydrite and anthraquinone-2,6-disulfonate on the reductive transformation of 2,4,6-trinitrotoluene by a gram-positive fermenting bacterium. Environ Sci Technol 39:7126–7133. doi:10.1021/es0504441

    Google Scholar 

  • Borch T, Kretzschmar R, Kappler A, Cappellen PV, Ginder-Vogel M, Voegelin A, Campbell K (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environ Sci Technol 44:15–23. doi:10.1021/es9026248

    Article  CAS  Google Scholar 

  • Brayner R, Ferrari-Iliou R, Brivois N, Djediat S, Benedetti MF, Fievet F (2006) Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870. doi:10.1021/nl052326h

    Article  CAS  Google Scholar 

  • Buisman C, Uspeert P, Janssen A, Lettinga G (1990) Kinetics of chemical and biological sulphide oxidation in aqueous solutions. Water Res 24:667–671. doi:10.1016/0043-1354(90)90201-G

    Article  CAS  Google Scholar 

  • Caliman FA, Robu BM, Smaranda C, Pavel VL, Gavrilescu M (2011) Soil and groundwater cleanup: benefits and limits of emerging technologies. Clean Techn Environ Policy 13:241–268. doi:10.1007/s10098-010-0319-z

    Article  Google Scholar 

  • Chamberlain E, Adams C (2006) Oxidation of sulfonamides, macrolides, and carbadox with free chlorine and monochloramine. Water Res 40:2517–2526. doi:10.1016/j.watres.2006.04.039

    Article  CAS  Google Scholar 

  • Chen K, Morris C (1972) Kinetics of oxidation of aqueous sulfide by O2. Environ Sci Technol 6:529–537. doi:10.1021/es60065a008

    Article  CAS  Google Scholar 

  • Cheng IF, Muftikian R, Fernando Q, Korte N (1997) Reduction of nitrate to ammonia by zero-valent iron. Chemosphere 35:2689–2695. doi:10.1016/S0045-6535(97)00275-0

    Article  CAS  Google Scholar 

  • Cherdwongchareonsuk D, Aguas AP, Henrique R, Upatham S, Pereira AS (2003) Toxic effects of selenium inhalation: acute damage of the respiratory system of mice. Hum Exp Toxicol 22:551–557. doi:10.1191/0960327103ht396oa

    Article  CAS  Google Scholar 

  • Chew CF, Zhang TC (1998) In-situ remediation of nitrate-contaminated ground water by electrokinetics/iron wall processes. Water Sci Technol 38:135–142. doi:10.1016/S0273-1223(98)00615-5

    Article  CAS  Google Scholar 

  • Chew CF, Zhang TC, Shan J (1998) Removal of nitrate/atrazine contamination with zero-valent iron promoted processes. In: Proceedings of the 1998 conference on hazardous waste research, Utah, pp 335–346

    Google Scholar 

  • Cho M, Chung H, Choi W, Yoon J (2005) Different inactivation behavior of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl Environ Microbiol 71:270–275. doi:10.1128/AEM

    Article  CAS  Google Scholar 

  • Choe S, Chang Y-Y, Hwang K-Y, Khim J (2000) Kinetics of reductive denitrification by nanoscale zerovalent iron. Chemosphere 41:1307–1311. doi:10.1016/S0045-6535(99)00506-8

    Article  CAS  Google Scholar 

  • Chrostowski P, Durda JL, Edelmann KG (1991) The use of natural processes for the control of chromium migration. Remediation J 1(3):341–351. doi:10.1002/rem.3440010309

    Article  Google Scholar 

  • Claire (2007) Treatment of chromium contamination and chromium ore processing residue, Technical Bulletin (TB 14). Contaminated land: Applications in real environment. http://www.claire.co.uk/

  • Colberg PJS, Young LY (1995) Anaerobic degradation of nonhalogenated homocyclic aromatic compounds coupled with nitrate, iron or sulfate. In: Young LY, Cerniglia CE (eds) Microbiological transformation and degradation of toxic organic chemicals. Wiley-Liss, New York, pp 301–324

    Google Scholar 

  • Collin GJ, Deslauriers H (2004) The vacuum UV photolysis of various C4 and C5 olefins: the energy content of the α- and β-methallyl fragments. Int J Chem Kinet 12:17–28. doi:10.1002/kin.550120103

    Article  Google Scholar 

  • Collings AF, Farmer AD, Gwan PB, Sosa Pintos AP, Leo CJ (2006) Processing contaminated soils and sediments by high power ultrasound. Miner Eng 19:450–453. doi:10.1016/j.mineng.2005.07.014

    Article  CAS  Google Scholar 

  • de Rudder J, Van de Wiele T, Dhooge W, Comhaire F, Verstraete W (2004) Advanced water treatment with manganese oxide for the removal of 17 alpha-ethynylestradiol (EE2). Water Res 38:184–192. doi:10.1016/j.watres.2003.09.018

    Article  CAS  Google Scholar 

  • Deborde M, Gunten UV (2008) Reactions of chlorine with inorganic and organic compounds during water treatment-kinetics and mechanisms: a critical review. Water Res 42:13–51. doi:10.1016/j.watres.2007.07.025

    Article  CAS  Google Scholar 

  • DeLuca SJ, Chao AC, ASCE M, Smalwood CJ (1983) Ames test of ferrate treated water. J Environ Eng 109:1159–1167. doi:10.1061/(ASCE)0733-9372(1983)109:5(1159)

    Article  CAS  Google Scholar 

  • Dhawale SW (1993) Thiosulfate: an interesting sulfur oxoanion that is useful in both medicine and industry–but is implicated in corrosion. J Chem Educ 70:12–14. doi:10.1021/ed070p12

    Article  CAS  Google Scholar 

  • Dixon WT, Norman ROC, Buley AL (1964) Electron spin resonance studies of oxidation. Part II. Aliphatic acids and substituted acids. J Chem Soc 3625–3634. doi:10.1039/JR9640003625

  • Dodd MC, Huang CH (2004) Transformation of the antibacterial agent sulfamethoxazole in reactions with chlorine: kinetics, mechanisms, and pathways. Environ Sci Technol 38:5607–5615. doi:10.1021/es035225z

    Article  CAS  Google Scholar 

  • Dodd MC, Shah AD, Von Gunten U, Huang CH (2005) Interactions of fluoroquinolone antibacterial agents with aqueous chlorine: reaction kinetics, mechanisms, and transformation pathways. Environ Sci Technol 39:7065–7076. doi:10.1021/es050054e

    Article  CAS  Google Scholar 

  • Dodd MC, Buffle M-O, Gunten UV (2006) Oxidation of antibacterial molecules by aqueous ozone: moiety-specific reaction kinetics and applications in ozone based wastewater treatment. Environ Sci Technol 40:1969–1977. doi:10.1021/es051369x

    Article  CAS  Google Scholar 

  • Dzombak DA, Morel FMM (1990) Surface complexation modeling, hydrous ferric oxide. Wiley, New York

    Google Scholar 

  • Elsner M, Schwarzenbach RP, Haderlein SB (2004) Reactivity of Fe(II)-bearing minerals toward reductive transformation of organic contaminants. Environ Sci Technol 38:799–807. doi:10.1021/es0345569

    Article  CAS  Google Scholar 

  • Emett M, Khoe G (2001) Photochemical oxidation of arsenic by oxygen and iron in acidic solutions. Water Res 35:649–656. doi:10.1016/S0043-1354(00)00294-3

    Article  CAS  Google Scholar 

  • Esplugas S, Bila DM, Krause LGT, Dezotti M (2007) Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Mater 149:631–642. doi:10.1016/j.jhazmat.2007.07.073

    Article  CAS  Google Scholar 

  • Evanko CR, Dzombak DA (1997) Remediation of metals-contaminated soils and groundwater, technology evaluation report, TE-97-01. Ground-Water Remediation Technologies Analysis Center, Pittsburg

    Google Scholar 

  • Fallab S (1967) Reactions with molecular oxygen. Angew Chem Int Ed 6:496–507. doi:10.1002/anie.196704961

    Article  CAS  Google Scholar 

  • Fang J, Lyon DY, Wiesner MR, Dong J, Alvarez PJJ (2007) Effect of a fullerene water suspension on bacterial phospholipids and membrane phase behavior. Environ Sci Technol 41:2636–2642. doi:10.1021/es062181w

    Article  CAS  Google Scholar 

  • Fanning JC (2000) The chemical reduction of nitrate in aqueous solution. Coord Chem Rev 199:159–179. doi:10.0010/8545/00

    Article  CAS  Google Scholar 

  • Farooq S, Akhlaque S (1983) Comparative response of mixed cultures of bacteria and virus to ozonation. Water Res 17:809–812. doi:10.1016/0043-1354(83)90076-3

    Article  CAS  Google Scholar 

  • Feng D, Aldrich C (2000) Sonochemical treatment of simulated soil contaminated with diesel. Adv Environ Res 4:103–112. doi:10.1016/S1093-0191(00)00008-3

    Article  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668. doi:10.1002/1097-4636(20001215)52:4<662::AID-JBM10>3.0.CO;2-3

    Article  CAS  Google Scholar 

  • Fruchter JS, Cole CR, Williams MD, Vermeul VR, Teel SS, Amonette JE, Szecsody JE, Yabusaki SB (1997) Creation of a subsurface permeable treatment barrier using in situ redox manipulation. Pacific Northwest National Laboratory, Richland

    Google Scholar 

  • Gadd JM (2008) Transformation and mobilization of metals, metalloids, and radionuclides by microorganisms. In: Violante A, Huang PM, Gadd GM (eds) Biophysico-chemical processes of metals and metalloids in soil environments, vol 1, Wiley-Jupac Series. Wiley, Hoboken, pp 53–96

    Google Scholar 

  • Garbarino JR, Hayes H, Roth D, Antweider R, Brinton TI, Taylor H (1995) Contaminants in the Mississippi river. U. S. Geological Survey Circular, Virginia, 1133

    Google Scholar 

  • Gates D (1998) The chlorine dioxide handbook. American Water Works Association, Denver

    Google Scholar 

  • Gazit E (2007) Self-assembled peptide nanostructures: the design of molecular building blocks and their technological utilization. Chem Soc Rev 36:1263–1269. doi:10.1039/B605536M

    Article  CAS  Google Scholar 

  • Ghauch A, Gallet C, Charef A, Rima J, Martin-Bouyer M (2001) Reductive degradation of carbaryl in water by zero-valent iron. Chemosphere 42:419–424. doi:10.1016/S0045-6535(00)00073-4

    Article  CAS  Google Scholar 

  • Ghurye G, Clifford D (2001) Laboratory study on the oxidation of As III to As V. Proceedings, AWWA water quality technology conference. American Water Works Association, Denver

    Google Scholar 

  • Gilbert M, Waite TD, Hare C (1976) Application of ferrate ion to disinfection. J Am Wks Assoc 56:466–474

    Google Scholar 

  • Gillham RW, Ohannesin SF (1994) Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32:958–967. doi:10.1111/j.1745-6584.1994.tb00935.x

    Article  CAS  Google Scholar 

  • Ginder-Vogel M, Borch T, Mayes MA, Jardine PM, Fendorf S (2005) Chromate reduction and retention processes within arid subsurface environments. Environ Sci Technol 39:7833–7839. doi:10.1021/es050535y

    Article  CAS  Google Scholar 

  • Gonzales MC, Braun AM, Pelizzetti E (1994) Vacuum-ultraviolet (VUV) photolysis of water: mineralization of atrazine. Chemosphere 28:2121–2127. doi:10.1016/0045-6535(94)90180-5

    Article  Google Scholar 

  • Gorski CA, Scherer MM (2009) Influence of magnetite stoichiometry on FeII uptake and nitrobenzene reduction. Environ Sci Technol 43:3675–3680. doi:10.1021/es803613a

    Article  CAS  Google Scholar 

  • Graham MC, Farmer JG, Anderson O, Paterson E, Hillier S, Lumsdon DG (2006) Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue. Sci Total Environ 364:32–44. doi:10.1016/j.scitotenv.2005.11.007

    Article  CAS  Google Scholar 

  • Gun J, Modestov AD, Kamyshny A Jr, Ryzkov D, Gitis V, Goifman A, Lev O, Hultsch V, Grischek T, Worch E (2004) Electrospray ionization mass spectrometric analysis of aqueous polysulfide solutions. Microchim Acta 146:229–237. doi:10.1007/s00604-004-0179-5

    Article  CAS  Google Scholar 

  • Gunten UV (2003) Ozonation of drinking water: part I. Oxidation kinetics and product formation. Water Res 37:1443–1467. doi:10.1016/S0043-1354(02)00457-8

    Article  CAS  Google Scholar 

  • Gupta KKS, Gupta SS, Chatterjee HR (1976) Kinetics of the oxidation of hydrazine by chromium(VI). J Inorg Nucl Chem 38:549–552

    Article  Google Scholar 

  • Guwy AJ, Hawkes FR, Martin SR, Jawkes DL, Cunnah P (2000) A technique for monitoring peroxide concentration off-line and on-line. Water Res 34:2191–2198. doi:10.1016/S0043-1354(99)00404-2

    Article  CAS  Google Scholar 

  • Haas CN, Engelbrecht RS (1980) Physiological alterations of vegetative microorganisms resulting from aqueous chlorination. J Water Pollut Control Fed 52:1976–1989

    CAS  Google Scholar 

  • Hackenthal E (1965) Die reduktion von perchlorat durch bakterien – II: Die identität der nitratreduktase und des perchlorat reduzierenden enzyms aus B. Cereus. Biochem Pharmacol 14:1313–1324. doi:10.1016/0006-2952(65)90118-8

    Article  CAS  Google Scholar 

  • Hadjmohammadi MR, Salary M, Biparva P (2011) Removal of Cr(VI) from aqueous solution using pine needles powder as a adsorbent. J Appl Sci Environ Sanit 6:1–13

    CAS  Google Scholar 

  • Hakala JA, Chin YP, Weber EJ (2007) Influence of dissolved organic matter and Fe(II) on the abiotic reduction of pentachloronitrobenzene. Environ Sci Technol 41:7337–7342. doi:10.1021/es070648c

    Article  CAS  Google Scholar 

  • Hammer MJ, Hammer MJJ (2004) Water quality, water and waste water technology, 5th edn. Prentice-Hall, New Jersey, pp 139–159

    Google Scholar 

  • Handler RM, Beard BL, Johnson CM, Scherer MM (2009) Atom exchange between aqueous Fe(II) and goethite: an Fe isotope tracer study. Environ Sci Technol 43:1102–1107. doi:10.1021/es802402m

    Article  CAS  Google Scholar 

  • Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metals contaminated ground water. J Environ Manage 92:2355–2388. doi:10.1016/j.jenvman.2011.06.009

    Article  CAS  Google Scholar 

  • He F (2007) Preparation, characterization, and applications of polysaccharide-stabilized metal nanoparticles for remediation of chlorinated solvents in soils and groundwater. PhD thesis, Auburn University, Auburn, p 277

    Google Scholar 

  • Heijman CG, Holliger C, Glaus MA, Schwarzenbach RP, Zeyer J (1993) Abiotic reduction of 4-chloronitrobenzene to 4-chloroaniline in a dissimilatory iron-reducing enrichment culture. Appl Environ Microbiol 59:4350–4353. doi:10.0099/2240/93/124350-04

    CAS  Google Scholar 

  • Hoff JC (1986) Inactivation of microbial agents by chemical disinfectants. U.S. Environmental Protection Agency, Cincinnati, EPA/600/S602-686/067

    Google Scholar 

  • Hoffman MR, Hua I, Hochemer R (1996) Application of ultrasonic irradiation for the degradation of contaminants in water. Ultrason Sonochem 3:S163–S172. doi:10.1016/S1350-4177(96)00022-3

    Article  Google Scholar 

  • Hoigne J, Bader H (1994) Kinetics of reactions of chlorine dioxide (OClO) in water – I. Rate constants for inorganic and organic compounds. Water Res 28:45–55. doi:10.1016/0043-1354(94)90118-X

    Article  CAS  Google Scholar 

  • Holleman AF, Wiberg E, Wiberg N (1985) Iron (in German). Lehrbuch der Anorganischen Chemie (91–100 ed.). Walter de Gruyter, Berlin, pp 1056–1057

    Google Scholar 

  • Huang YH, Zhang TC (2002) Kinetics of nitrate reduction by iron at near neutral pH. J Environ Eng 128:604–611. doi:10.1061/(ASCE)0733-9372(2002)128:7(604)

    Article  CAS  Google Scholar 

  • Huang YH, Zhang TC (2004) Effects of low pH on nitrate reduction by iron powder. Water Res 38:2631–2642. doi:10.1016/j.watres.2004.03.015

    Article  CAS  Google Scholar 

  • Huang C-P, Wang H-W, Chiu P-C (1998) Nitrate reduction by metallic iron. Water Res 32:2257–2264. doi:10.1016/S0043-1354(97)00464-8

    Article  CAS  Google Scholar 

  • Huang YH, Zhang TC, Shea PJ, Comfort SD (2003) Effects of oxide coating and selected cations on nitrate reduction by iron metal. J Environ Qual 32:1306–1315. doi:10.2134/jeq2003.1306

    Article  CAS  Google Scholar 

  • Huber MM, Korhonen S, Ternes TA, Gunten UV (2005) Oxidation of pharmaceuticals during water treatment with chlorine dioxide. Water Res 39:3607–3617. doi:10.1016/j.watres.2005.05.040

    Article  CAS  Google Scholar 

  • Huiatt JL et al (1983) Workshop: cyanide from mineral processing. Utah Mining and Mineral Resources Institute, Salt Lake City

    Google Scholar 

  • Hunt NK, Marinas BJ (1997) Kinetics of Escherichia coli inactivation with ozone. Water Res 31(6):1355–1362. doi:10.1016/S0043-1354(96)00394-6

    Article  Google Scholar 

  • Ibanez JA, Litter MI, Pizarro RA (2003) Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae. Comparative study with other Gram (−) bacteria. J Photochem Photobiol A Chem 157:81–85. doi:10.1016/S1010-6030(03)00074-1

    Article  CAS  Google Scholar 

  • Ikehata K, Naghashkar NJ, El-Din MG (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci Eng 28:353–414. doi:10.1080/01919510600985937

    Article  CAS  Google Scholar 

  • Ingvorgsen K et al (1991) Novel cyanide- hydrolyzing enzyme from alcaligenes xylosoxidans subsp. denitrificans. Appl Environ Microbiol 57:1783–1789. doi:10.0099/2240/91/061783-07$02.00/0

    Google Scholar 

  • Jeannot C, Malaman B, Gerardin R, Oulladiaf B (2002) Synthesis, crystal and magnetic structures of the sodium ferrate(VI) Na4FeO4 studied by neutron diffraction and mossbauer techniques. J Solid State Synth 165:266–277. doi:10.1006/jssc.2002.9520

    Article  CAS  Google Scholar 

  • Jiang JQ, Wang S (2003a) Enhanced coagulation with potassium ferrate(VI) for removing humic substances. Environ Eng Sci 20:627–633. doi:10.1089/109287503770736140

    Article  CAS  Google Scholar 

  • Jiang JQ, Wang S (2003b) Inactivation of Escherichia coli with ferrate and sodium hypochlorite: a study on the disinfection performance and constant. In: Vogelpohl A (ed) Oxidation technology water wastewater, vol 57, CUTEC-Series Publication. Papierflieger Verlag, Clausthal-Zellerfeld, pp 406–411

    Google Scholar 

  • Jiang JQ, Wang S, Kim CG (2002) Disinfection performance of potassium ferrate. In: Conference proceedings: the 3rd IWA World Water Congress, Melbourne, 7–12 Apr

    Google Scholar 

  • Jiemvarangkul P, Zhang WX, Lien HL (2011) Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chem Eng J 170:482–491. doi:10.1016/j.cej.2011.02.065

    Article  CAS  Google Scholar 

  • Jin S, Fallgren PH (2010) Electrically induced reduction of trichloroethene in clay. J Hazard Mater 173:200–204. doi:10.1016/j.jhazmat.2009.08.069

    Article  CAS  Google Scholar 

  • Johnson MD, Sharma KD (1999) Kinetics and mechanism of the reduction of ferrate by one-electron reductants. Inorg Chim Acta 293:229–233. doi:10.1016/S0020-1693(99)00214-5

    Article  CAS  Google Scholar 

  • Jolly WL (1964) The inorganic chemistry of nitrogen. Benjamin, New York, p 61

    Google Scholar 

  • Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxico 283:65–87. doi:10.1016/j.tox.2011.03.001

    Article  CAS  Google Scholar 

  • Jones-Lee A, Lee GF (2005) Role of iron chemistry in controlling the release of pollutants from resuspended sediments. Remediation J 16:33–41. doi:10.1002/rem.20068

    Article  Google Scholar 

  • Junyapoon S (2005) Use of zero-valent iron for waste water treatment. KMITL Sci Techn J 5(3):587–595

    Google Scholar 

  • Kamyshny AJ, Goifman A, Gun J, Rizkov D, Ovadia L (2004) Equilibrium distribution of polysulfide ions in aqueous solutions at 25 °C: a new approach for the study of polysulfides equilibria. Environ Sci Technol 38:6633–6644. doi:10.1021/es049514e

    Article  CAS  Google Scholar 

  • Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40:2045–2050. doi:10.1021/es0520924

    Article  CAS  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673. doi:10.1021/la701067r

    Article  CAS  Google Scholar 

  • Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008) Antibacterial effects of carbon nanotubes: size does matter. Langmuir 24:6409–6413. doi:10.1021/la800951v

    Article  CAS  Google Scholar 

  • Kappler A, Haderlein SB (2003) Natural organic matter as reductant for chlorinated aliphatic pollutants. Environ Sci Technol 37:2714–2719. doi:10.1021/es0201808

    Article  CAS  Google Scholar 

  • Kato K, Kazama F (1983) Biocidal studies on potassium ferrate(VI) I. The biocidal effects relating to the nature of water samples from urban river and sewage plant (in Japanese). Mizushori Gijutsu Wat Purification Liq Waste Treat 24:929–934

    CAS  Google Scholar 

  • Kato K, Kazama F (1984) Biocidal studies on potassium ferrate(VI) II. Relation of the biocidal effects to the buffer action of water samples (in Japanese). Mizushori Gijutsu Wat Purification Liq Waste Treat 25:9–15

    CAS  Google Scholar 

  • Kato K, Kazama F (1990) Respiratory inhibition of Sphaerotilus by iron compounds and the distribution of the sorbed iron. Water Sci Technol 23:947–954

    Google Scholar 

  • Kato K, Kazama F (1991) Biocidal characteristics of potassium ferrate. In: Proceedings of the 3rd IAWPRC regional conference on Asian water quality, Shanghai, II-50-II-55, 20–24 Nov

    Google Scholar 

  • Kazama F (1989) Respiratory inhibition of Sphaerotilus by potassium ferrate. J Ferment Bioeng 67:369–373. doi:10.1016/0922-338X(89)90042-1

    Article  CAS  Google Scholar 

  • Kazama F (1994) Inactivation of coliphage Qb by potassium ferrate. FEMS Microbiol Lett 118:345–349. doi:10.1111/j.1574-6968.1994.tb06851.x

    CAS  Google Scholar 

  • Kazama F (1995) Viral inactivation by potassium ferrate. Water Sci Technol 31:165–168. doi:10.1016/0273-1223(95)00259-P

    Article  CAS  Google Scholar 

  • Khetan SK, Collins TJ (2007) Human pharmaceuticals in the aquatic environment: a challenge to green chemistry. Chem Rev 107:2319–2364. doi:10.1021/cr020441w

    Article  CAS  Google Scholar 

  • Kikuchi Y, Sunada K, Iyoda T, Hashimoto K, Fujishima A (1997) Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. J Photochem Photobiol A Chem 106:51–56. doi:10.1016/S1010-6030(97)00038-5

    Article  CAS  Google Scholar 

  • Kim M, Nriagu J (2000) Oxidation of arsenite in groundwater using ozone and oxygen. Sci Total Environ 247:71–79. doi:10.1016/S0048-9697(99)00470-2

    Article  CAS  Google Scholar 

  • Kim C, Zhou Q, Deng B, Thornton E, Xu H (2001) Chromium (VI) reduction by hydrogen sulfide in aqueous media: stoichiometry and kinetics. Environ Sci Technol 35:2219–2225. doi:10.1021/es0017007

    Article  CAS  Google Scholar 

  • Kim J-H, Han S-J, Kim S-S, Yang J-W (2006) Effect of soil chemical properties on the remediation of phenanthrene-contaminated soil by electrokinetic-Fenton process. Chemosphere 63:1667–1676. doi:10.1016/j.chemosphere.2005.10.008

    Article  CAS  Google Scholar 

  • Kim JS, Shea PJ, Yang JE, Kim J-E (2007) Halide salts accelerate degradation of high explosives by zerovalent iron. Environ Pollut 147:634–641. doi:10.1016/j.envpol.2006.10.010

    Article  CAS  Google Scholar 

  • Kim JY, Lee C, Cho M, Yoon J (2008) Enhanced inactivation of E. coli and MS-2 phage by silver ions combined with UV-A and visible light irradiation. Water Res 42:356–362. doi:10.1016/j.watres.2007.07.024

    Article  CAS  Google Scholar 

  • Klausen J, Haderlein SB, Schwarzenbach RP (1997) Oxidation of substituted anilines by aqueous MnO2: effect of cosolutes on initial and quasi-steady-state kinetics. Environ Sci Technol 31:2642–2649. doi:10.1021/es970053p

    Article  CAS  Google Scholar 

  • Kleinjan W, Keizer A, Janssen A (2005) Kinetics of the chemical oxidation of polysulfide anions in aqueous solution. Water Res 39:4093–4100. doi:10.1016/j.watres.2005.08.006

    Article  CAS  Google Scholar 

  • Korenkov VN, Ivanovich V, Kuznetsov SI, Vorenov JV (1976) Process for purification of industrial waste waters from perchlorates and chlorates. US Patent 39,430,559, Mar

    Google Scholar 

  • Kotwicki V (2009) Water balance of Earth/Bilan hydrologique de la Terre. Hydrol Sci J 54:829–840

    Article  Google Scholar 

  • Krachler M, Zheng J, Koerner R, Zdanowicz C, Fisher D, Shotyk W (2005) In increasing atmospheric antimony contamination in the northern hemisphere: snow and ice evidence from Devon Island, Arctic Canada 2005. Royal Society of Chemistry, London, pp 1169–1176

    Google Scholar 

  • LaGrega MD, Buckingham PL, Evans JC (1994) Hazardous waste management. McGraw Hill, New York

    Google Scholar 

  • Lan Y, Deng B, Kim C, Thornton E (2007) Influence of soil minerals on chromium (VI) reduction by sulfide under anoxic conditions. Geochem Trans 8:4. doi:10.1186/1467-4866-8-4

    Article  CAS  Google Scholar 

  • Lee JD (1977) A new concise inorganic chemistry, 3rd edn. ELBS, London, pp 207–208

    Google Scholar 

  • Lee Y, Um I-H, Yoon J (2003) Arsenic(III) oxidation by iron(VI) (ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation. Environ Sci Technol 37:5750–5756. doi:10.1021/es034203+

    Article  CAS  Google Scholar 

  • Lenntech (2004) Water treatment. Lenntech, Rotterdamseweg (Lenntech Water Treatment and Air Purification)

    Google Scholar 

  • Lescano MR, Zalazar CS, Cassano AE, Brandi RF (2011) Arsenic(III) oxidation of water applying a combination of hydrogen peroxide and UVC radiation. Photochem Photobiol Sci 10:1797–1803. doi:10.1039/c1pp05122a

    Article  CAS  Google Scholar 

  • Li XQ, Zhong DF, Huang HH, Wu SD (2001) Demethylation metabolism of roxithromycin in humans and rats. Acta Pharmacol Sin 22:469–474

    Google Scholar 

  • Li D, Lyon DY, Li Q, Alvarez PJJ (2008a) Effect of natural organic matter on antibacterial activity of fullerene water suspension. Environ Toxicol Chem 27:1888–1894. doi:10.1897/07-548.1

    Article  CAS  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008b) Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res 42:4591–4602. doi:10.1016/j.watres.2008.08.015

    Article  CAS  Google Scholar 

  • Lin K, Liu W, Gan J (2009) Oxidative removal of bisphenol A by manganese dioxide: efficacy, products, and pathways. Environ Sci Technol 43:3860–3864. doi:10.1021/es900235f

    Article  CAS  Google Scholar 

  • Little C, Hepher MJ, El-Sharif M (2002) The sono-degradatio of phenanthrene in an aqueous environment. Ultrasonics 40:667–674. doi:10.1016/S0041-624X(02)00196-8

    Article  CAS  Google Scholar 

  • Liu HL, Yang TCK (2003) Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light. Process Biochem 39:475–481. doi:10.1016/S0032-9592(03)00084-0

    Article  CAS  Google Scholar 

  • Ludwig RD, Su C, Lee TR, Wilkin RT, Acree SD, Ross RR, Keeley A (2007) In situ chemical reduction of Cr(VI) in groundwater using a combination of ferrous sulfate and sodium dithionite: a field investigation. Environ Sci Technol 41:5299–5305. doi:10.1021/es070025z

    Google Scholar 

  • Lyon DY, Adams LK, Falkner JC, Alvarez PJJ (2006) Antibacterial activity of fullerene water suspensions: effects of preparation method and particle size. Environ Sci Technol 40:4360–4366. doi:10.1021/es0603655

    Article  CAS  Google Scholar 

  • Lyon DY, Thill A, Rose J, Alvarez PJJ (2007) In: Wiesner MR, Bottero J-Y (eds) Environmental nanotechnology: applications and impacts of nanomaterials. McGraw-Hill, New York, pp 445–480

    Google Scholar 

  • Malmqvist A, Welander T, Moore E, Ternström A, Molin G, Stenström I-M (1994) Ideonella dechloratans gen.nov., sp.nov., a new bacterium capable of growing anaerobically with chlorate as an electron acceptor. Syst Appl Microbiol 17:58–64. doi:10.1016/S0723-2020(11)80032-9

    Article  Google Scholar 

  • Mamane H, Shemer H, Linden KG (2007) Inactivation of E. coli, B. subtilis spores, and MS2, T4, and T7 phage using UV/H2O2 advanced oxidation. J Hazard Mater 146:479–486. doi:10.1016/j.jhazmat.2007.04.050

    Article  CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235. doi:10.1016/S0039-9140(02)00268-0

    Article  CAS  Google Scholar 

  • Manning BA, Hunt ML, Amrhein C, Yarmoff JA (2002) Arsenic(III) and arsenic(V) reactions with zerovalent iron corrosion products. Environ Sci Technol 36:5455–5461. doi:10.1021/es0206846

    Article  CAS  Google Scholar 

  • Maronny G (1959) Constantes de dissociation de l’hydrogene sulfure. Electrochim Acta 1:58–69. doi:10.1016/0013-4686(59)80009-8

    Article  CAS  Google Scholar 

  • Mason TJ (1990a) Critical reports on applied chemistry: chemistry with ultrasound, vol 28. Elsevier Science Publishers Ltd., New York, New York

    Google Scholar 

  • Mason TJ (1990b) Advances in sonochemistry, vol 1. Jai Press Ltd., London, England

    Google Scholar 

  • Mason TJ, Lorimer JP (2002) Applied sonochemistry: the uses of power ultrasound in chemistry and processing. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Mason TJ, Collings AF, Sumel A (2004) Sonic and ultrasonic removal of chemical contaminants from soil in the laboratory and on a large scale. Ultrason Sonochem 11:205–210. doi:10.1016/j.ultsonch.2004.01.025

    Article  CAS  Google Scholar 

  • Matheson LJ, Tratnyek PG (1994) Reductive Dehalogenation of Chlorinated Methanes by Iron Metal. Environ Sci Technol 28:2045–2053. doi:10.1021/es00061a012

    Article  CAS  Google Scholar 

  • Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281. doi:10.1128/AEM.69.7.4278-4281.2003

    Article  CAS  Google Scholar 

  • McArdell CS, Stone AT, Tian J (1998) Reaction of EDTA and related aminocarboxylate chelating agents with CoIIIOOH (heterogenite) and MnIIIOOH (manganite). Environ Sci Technol 32:2923–2930. doi:10.1021/es980362v

    Article  CAS  Google Scholar 

  • Means JL, Hinchee RE (1994) Emerging technology for bioremediation of metals. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Moberly J, Borch T, Sani R, Spycher N, Sengö RS, Ginn T, Peyton B (2009) Heavy metal-mineral associations in Coeur d’Alene river sediments: A synchrotron-based analysis. Water Air Soil Pollut 201:195–208. doi:10.1007/s11270-008-9937-z

    Article  CAS  Google Scholar 

  • Moffett JW, Zafiriou OC (1990) An investigation of hydrogen peroxide chemistry in surface waters of Vineyard Sound with H2 1802 and 1802. Limnol Oceanogr 35:1221–1229

    Article  CAS  Google Scholar 

  • Mohan D, Pittman CU Jr (2007) Arsenic removal from water/wastewater using adsorbents – A critical review. J Hazard Mater 142:1–53. doi:10.1016/j.jhazmat.2007.01.006

    Article  CAS  Google Scholar 

  • Moon DH, Wazne M, Jagupilla SC, Christodoulatos C, Kim MG, Koutsospyros A (2008) Particle size and pH effects on remediation of chromite ore processing residue (COPR) using calcium polysulfide (CaS5). Sci Total Environ 399:2–10. doi:10.1016/j.scitotenv.2008.03.040

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. doi:10.1088/0957-4484/16/10/059

    Article  CAS  Google Scholar 

  • Mueller JG, Cerniglia CE, Pritchard PH (1996) Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons. In: bioremediation: principles and applications. Cambridge University Press, Cambridge, pp 125–194

    Chapter  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207. doi:10.1016/S0013-7952(00)00101-0

    Article  Google Scholar 

  • MWH (2005) Water treatment: principles and design, 2nd edn. John Wiley & Sons, Inc., Hoboken, New Jersey

    Google Scholar 

  • Narayan RJ, Berry CJ, Brigmon RL (2005) Structural and biological properties of carbon nanotube composite films. Mater Sci Eng B 123:123–129. doi:10.1016/j.mseb.2005.07.007

    Article  CAS  Google Scholar 

  • Neppolian B, Doronila A, Grieser F, Ashokkumar M (2009) Simple and efficient sonochemical method for the oxidation of arsenic (III) to arsenic (V). Environ Sci Technol 43:6793–6798. doi:10.1021/es900878g

    Article  CAS  Google Scholar 

  • Novak F, Sukes G (1981) Plant Experiences: Destruction of cyanide wastewater by ozonation. Ozone Sci Eng 3:61–86. doi:10.1080/01919518108550907

    Article  CAS  Google Scholar 

  • O’Hannesin SF, Gillham RW (1998) Long-term performance of an in situ “iron wall” for remediation of VOCs. Ground Water 36:164–170. doi:10.1111/j.1745-6584.1998.tb01077.x

    Article  Google Scholar 

  • Odeh IN, Francisco JS, Margerum DW (2002) New pathways for chlorine dioxide decomposition in basic solution. Inorg Chem 41:6500–6506. doi:10.1021/ic0204676

    Article  CAS  Google Scholar 

  • Page MM, Page CL (2002) Electroremediation of contaminated soils. J Environ Eng – ASCE 128:208–219. doi:10.1061/(ASCE)0733-9372(2002)128:3(208)

    Article  CAS  Google Scholar 

  • Pan B, Xiao L, Nie G, Pan B, Wu J, Lv L, Jhang W, Jheng S (2010) Adsorptive selenite removal from water using a nano-hydrated ferric oxides (HFOs)/polymer hybrid adsorbent. J Environ Monit 12:305–310. doi:10.1039/b913827g

    Article  CAS  Google Scholar 

  • Parida KM, Gorai B, Das NN, Rao SB (1997) Studies on ferric oxide hydroxides – III. Adsorption of selenite (SeO3 2-) on different forms of iron oxyhydroxides. J Colloid Interface Sci 185:355–362. doi:10.1006/jcis.1996.4522

  • Payne WJ (1973) Reduction of nitrogenous oxides by microorganisms. Bacteriol Rev 37:409–452

    CAS  Google Scholar 

  • Perfliev YD, Benko EM, Pankratov DA, Sharma VK, Dedushenko SK (2007) Formation of iron(VI) in ozonolysis of iron(III) in alkaline solution. Inorg Chim Acta 360:2789–2791. doi:10.1016/j.ica.2006.11.019

    Article  CAS  Google Scholar 

  • Pettine M, Campanella L, Millero F (1999) Arsenite oxidation by H2O2 in aqueous solutions. Geochim Cosmochim Acta 63:2727–2735. doi:10.1016/S0016-7037(99)00212-4

    Article  CAS  Google Scholar 

  • Polizzotto ML, Kocar BD, Benner SG, Sampson M, Fendorf S (2008) Near-surface wetland sediments as a source of arsenic release to ground water in Asia. Nature 454:505–508. doi:10.1038/nature07093

    Article  CAS  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solution using supported nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569. doi:10.1021/es9911420

    Article  CAS  Google Scholar 

  • Puls RW, Paul CJ, Powell RM (1999) The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate contaminated groundwater: a field test. Appl Geochem 14:989–1000. doi:10.1016/S0883-2927(99)00010-4

    Article  CAS  Google Scholar 

  • Qi L, Xu Z, Jiang X, Hu C, Zou X (2004) Preparation and antibacterial activity of chitosan nanoparticles. Carbohydr Res 339:2693–2700. doi:10.1016/j.carres.2004.09.007

    Article  CAS  Google Scholar 

  • Raef S (1977) (a) Fate of cyanide and related compounds in aeration microbial systems-I. Chemical reaction with substrate and physical removal. Water Res 11:477–483. doi:10.1016/0043-1354(77)90033-1. (b) Fate of cyanide and related compounds in aerobic microbial systems – II. Microbial degradation. Water Res 11:485–492. doi:10.1016/0043-1354(77)90034-3

  • Rahn RO, Setlow JK, Landry LC (1973) Ultraviolet irradiation of nucleic acids complexed with heavy atoms-III. Influence of Ag+ and Hg2+ on the sensitivity of phage and of transforming DNA to ultraviolet radiation. Photochem Photobiol 18:39–41. doi:10.1111/j.1751-1097.1973.tb06390.x

    Article  CAS  Google Scholar 

  • Read JF, John J, MacPherson J, Schaubel C, Theriault A (2001) The kinetics and mechanism of the oxidation of inorganic oxysulfur compounds by potassium ferrate. Part I. Sulfite, thiosulfate and dithionite ions. Inorganica Chim Acta 315:96–106. doi:10.1016/S0020-1693(01)00331-0

    Article  CAS  Google Scholar 

  • Read JF, Graves CR, Jackson E (2003) The kinetics and mechanism of the oxidation of the thiols 3-mercapto-1-propane sulfonic acid and 2-mercaptonicotinic acid by potassium ferrate. Inorg Chim Acta 348:41–49. doi:10.1016/S0020-1693(03)00003-3

    Article  CAS  Google Scholar 

  • Reddy KR, Karri MR (2009) Effect of electric potential on nanoiron particles delivery for pentachlorophenol remediation in low permeability soil. In: Hamza M, Shahien M, El-Mossallamy Y (eds) Proceedings of the 17th international conference on soil mechanics and geotechnical engineering: the academia and practice of geotechnical engineering. Alexandria, Egypt, pp 2312–2315

    Google Scholar 

  • ITRC (Interstate Technology & Regulatory Council) (2005) Perchlorate: overview of issues, status, and remedial options. PERCHLORATE-1. Interstate Technology & Regulatory Council, Perchlorate Team, Washington, DC. Available on the Internet at http://www.itrcweb.org

  • Richardson SD (2009) Water Analysis: Emerging Contaminants and Current Issues. Anal Chem 81:4645–4677. doi:10.1021/ac9008012

    Article  CAS  Google Scholar 

  • Rikken GB, Kroon AGM, van Ginkel CG (1996) Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation. Appl Microbiol Biotechnol 45:420–426. doi:10.1007/s002530050707

    Article  CAS  Google Scholar 

  • Rosenblatt DH, Hull LA, De Luca DC, Davis GT, Weglein RC, Williams HKR (1967) Oxidations of amines. II. Substituent effects in chlorine dioxide oxidations. J Am Chem Soc 98:1158–1163. doi:10.1021/ja00981a022

    Article  Google Scholar 

  • Ruppert G, Bauer R, Heisler GJ (1993) The photo-Fenton reaction – an effective photochemical wastewater treatment process. J Photochem Photobiol A Chem 73:75–78. doi:10.1016/1010-6030(93)80035-8

    Article  CAS  Google Scholar 

  • Rush JD, Bielski BHJ (1986) Pulse radiolysis of alkaline Fe(III) and Fe(VI) solutions. Observation of transient iron complexes with intermediate oxidation states. J Am Chem Soc 108:523–525. doi:10.1021/ja00263a037

    Article  CAS  Google Scholar 

  • Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54:177–182. doi:10.1016/S0167-7012(03)00037-X

    Article  CAS  Google Scholar 

  • Scheinost AC, Rossberg A, Vantelon D, Xifra I, Kretzschmar R, Leuz AK, Funke H, Johnson CA (2006) Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochim Cosmochim Acta 70:3299–3312. doi:10.1016/j.gca.2006.03.020

    Article  CAS  Google Scholar 

  • Schilt AA (1979) Perchloric acid and perchlorates. GFS Chemical Company, Columbus

    Google Scholar 

  • Schink T, Waite TD (1980) Inactivation of f2 virus with ferrate(VI). Water Res 14:1705–1717. doi:10.1016/0043-1354(80)90106-2

    Article  CAS  Google Scholar 

  • Schumb WC, Satterfield CN, Wentworth RL (1955) Hydrogen peroxide. Reinhold Publishing Corporation, New York

    Google Scholar 

  • Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic chemistry, 2nd edn. Wiley, New York, p 1313

    Google Scholar 

  • Seby F, Potin-Gautier M, Giffaut E, Donard OFX (1998) Assessing the speciation and the biogeochemical processes affecting the mobility of selenium from a geological repository of radioactive wastesto the biosphere. Analusis 26:193–198. doi:10.1051/analusis:1998134

    Article  CAS  Google Scholar 

  • Seby F, Potin-Gautier M, Giffaut E, Borge G, Donard OFX (2001) A critical review of thermodynamic data for selenium species at 25 °C. Chem Geol 171:173–194. doi:10.1016/S0009-2541(00)00246-1

    Article  CAS  Google Scholar 

  • Selm RP (1955) Ozone oxidation of aqueous cyanide waste solutions in stirred batch reactors and packed towers, vol 21, Ozone Chemistry and Technology, Advances in Chemistry. ACS, Washington, DC

    Google Scholar 

  • Sharma VK (2002) Potassium ferrate(VI): an environmentally friendly oxidant. Adv Environ Res 6:143–156. doi:10.1016/S1093-0191(01)00119-8

    Article  CAS  Google Scholar 

  • Sharma VK (2007) A review of disinfection performance of Fe(VI) in water and wastewater. Water Sci Technol 55(1–2):225–230. doi:10.2166/wst.2007.019

    Article  CAS  Google Scholar 

  • Sharma VK (2008) Oxidative transformations of environmental pharmaceuticals by Cl2, ClO2, O3 and Fe(VI): Kinetic assessment. Chemosphere 73:1379–1386. doi:10.1016/j.chemosphere.2008.08.033

    Article  CAS  Google Scholar 

  • Sharma V, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformation, and remediation. Environ Int 35:743–759. doi:10.1016/j.envint.2009.01.005

    Article  CAS  Google Scholar 

  • Sharma VK, Sohn M (2012) Reactivity of chlorine dioxide with amino acids, peptides, and proteins. Environ Chem Lett 10:255–264. doi:10.1007/s10311-012-0355-5

    Article  CAS  Google Scholar 

  • Sharma VK, Buenett CR, Millero FJ (2001) Dissociation constants of the monoprotic ferrate(VI) ion in NaCl media. Phys Chem Chem Phys 3:2059–2062. doi:10.1039/b101432n

    Article  CAS  Google Scholar 

  • Sharma VK, Kazama F, Jiangyong H, Ray AK (2005) Ferrate (iron(VI) and iron(V)): environmentally friendly oxidants and disinfectants. J Water Health 03:45–58, and references cited in

    CAS  Google Scholar 

  • Shih Y-H, Chen Y-C, Chen M-Y, Tai Y-T, Tso C-P (2009) Dechlorination of hexachlorobenzene by using nanoscale Fe and nanoscale Pd/Fe bimetallic particles. Colloids Surf A Physicochem Eng Asp 332:84–89. doi:10.1016/j.colsurfa.2008.09.031

    Article  CAS  Google Scholar 

  • Shutilov VA (1988) Fundamental physics of ultrasound. Gordon & Breach Science Publishers, New York

    Google Scholar 

  • Siantar DP, Schreier CG, Reinhard M, Chou C-S (1996) Treatment of 1,2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts. Water Res 30:2315–2322. doi:10.1016/0043-1354(96)00120-0

    Article  CAS  Google Scholar 

  • Skowronski B, Strobel GA (1969) Cyanide resistance and cyanide utilization by a strain of Bacillus pumilus. Can J Microbiol 15:93–98. doi:10.1139/m69-014

    Article  CAS  Google Scholar 

  • Smith A, Mudder T (1991) Chemistry and treatment of cyanidation wastes. Journal Books Ltd., New York, NY, pp 345–361

    Google Scholar 

  • Smith LA, Means JL, Chen A, Alleman B, Chapman CC, Tixier JS Jr, Brauning SE, Gavaskar AR, Royer MD (1995) Remedial options for metals-contaminated sites. Lewis Publishers, Boca Raton, FL

    Google Scholar 

  • Snell FD, Ettre LS (1971) Encyclopedia of industrial chemical analysis, vol 14. Interscience Publishers, New York

    Google Scholar 

  • Stone AT (1987) Reductive dissolution of manganese(III/IV) oxides by substituted phenols. Environ Sci Technol 21:979–988. doi:10.1021/es50001a011

    Article  CAS  Google Scholar 

  • Sulzer F, Ramadan F, Wuhrmann K (1959) Studies on the germicidal action of ozone. Aquat Sci Res Acr Bound 21:112–122

    Article  CAS  Google Scholar 

  • Suslick KS, Hammerton DA, Cline DE (1986) Sonochemical hot spot. J Am Chem Soc 108:5641–5642. doi:10.1021/ja00278a055

    Article  CAS  Google Scholar 

  • Tandon PK, Singh SB (2011) Hexacyanoferrate (III) oxidation of arsenic and its subsequent removal from the spent reaction mixture. J Hazard Mater 185:930–937. doi:10.1016/j.jhazmat.2010.09.109

    Article  CAS  Google Scholar 

  • Tandon PK, Singh SB, Srivastava M (2007) Synthesis of some aromatic aldehydes and acids by sodium ferrate in presence of Copper nano -particles adsorbed on K10 montmorillonite using microwave irradiation. Appl Organomet Chem 21:264–267. doi:10.1002/aoc.1198

    Article  CAS  Google Scholar 

  • Tandon PK, Singh SB, Singh S, Kesarwani B (2012) Oxidation of hydrocarbons, cyclic alcohols and aldehydes by in situ prepared sodium ferrate. J Indian Chem Soc 89:1363–1367

    CAS  Google Scholar 

  • Tandon PK, Singh SB, Shukla RC (2013) Antimicrobial and oxidative properties of sodium ferrate for the combined removal of arsenic in drinking water with shell ash of Unio. Ind Eng Chem Res 52:17038–17046. doi:10.1021/ie402485x

    Article  CAS  Google Scholar 

  • Tanwar KS, Petitto SC, Ghose SK, Eng PJ, Trainor TP (2009) Fe(II) adsorption on hematite (0 0 0 1). Geochim Cosmochim Acta 73:4346–4365. doi:10.1016/j.gca.2009.04.024

    Article  CAS  Google Scholar 

  • Taylor M, Fuessle R (1994) Stabilization of arsenic wastes. WMRC report (Waste Management and Research Center). Bradley University, Peoria, Illinois, p 7

    Google Scholar 

  • Thepsithar P, Roberts EPL (2006) Removal of phenol from contaminated kaolin using electrokinetically enhanced in situ chemical oxidation. Environ Sci Technol 40:6098–6103. doi:10.1021/es060883f

    Article  CAS  Google Scholar 

  • Thompson GW, Ockerman LT, Schreyer JM (1951) Preparation and purification of potassium ferrate(VI). J Am Chem Soc 73:1379–1381. doi:10.1021/ja01147a536

    Article  CAS  Google Scholar 

  • Thornton EC, Jackson RL (1994) Laboratory and field evaluation of the gas treatment approach for in situ remediation of chromate-contaminated soils. Prepared for the Department of. Energy, USA

    Google Scholar 

  • Tinjum JM, Benson CH, Edil TB (2008) Treatment of CrVI in COPR using ferrous sulfate–sulfuric acid or cationic polysulfides. J Geotech Geoenviron Eng 134:1791–1803. doi:10.1061/(ASCE)1090-0241(2008)134:12(1791)

    Article  Google Scholar 

  • Tiraferri A, Sethi R (2009) Enhanced transport of zerovalent iron nanoparticles in saturated porous media by guar gum. J Nanopart Res 11:635–645. doi:10.1007/s11051-008-9405-0

    Article  CAS  Google Scholar 

  • Tiraferri A, Chen KL, Sethi R, Elimelech M (2008) Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interface Sci 324:71–79. doi:10.1016/j.jcis.2008.04.064

    Article  CAS  Google Scholar 

  • Tratnyek PG, Hoigne J (1994) Kinetics of reactions of chlorine dioxide (ClO2) in water – II. Quantitative structure–activity relationships for phenolic compounds. Water Res 28:57–66. doi:10.1016/0043-1354(94)90119-8

    Article  CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nanotoday 1:44–48

    Article  Google Scholar 

  • Troitskaya NV, Mishchenko KP, Flis IE (1958) The ClO2 + e = ClO2 equilibrium in aqueous solutions at various temperatures. Russ J Phys Chem 33:1614–1617

    Google Scholar 

  • Trolard F, Bourrie G (2008) Geochemistry of green rusts and fougerite: a reevaluation of Fe cycles in soils. Adv Agron 99:227–288. doi:10.1016/S0065-2113(08)00405-7

    Article  CAS  Google Scholar 

  • Tsai T-T, Sah J, Kao C-M (2010) Application of iron electrode corrosion enhanced electrokinetic-Fenton oxidation to remediate diesel contaminated soils: a laboratory feasibility study. J Hydrol 380:4–13. doi:10.1016/j.jhydrol.2009.09.010

    Article  CAS  Google Scholar 

  • Tu¨zu¨n T, Su¨ru¨cu¨ G, Dilek FB (1999) Use of ferrate in water and wastewater treatment. In: Abstract 10th international symposium on environmental pollution and its impact on life in the mediterranean region, Alicante, 2–6 Oct 1999

    Google Scholar 

  • Tuazon CU (1995) Other Bacillus species. In: Mandell GL, Bennett JE, Dolin R (eds) Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, 4th edn. Churchill Livinstone, New York, p 1890–1894 and references therein

    Google Scholar 

  • Ukrainczyk L, McBride MB (1993) Oxidation and dechlorination of chlorophenols in dilute aqueous suspensions of manganese oxides: Reaction products. Environ Toxicol Chem 12:2015–2022. doi:10.1002/etc.5620121107

    Article  CAS  Google Scholar 

  • Urbansky ET (1998) Perchlorate chemistry: implications for analysis and remediation. Press, CRC

    Google Scholar 

  • US EPA (1986) Quality criteria for water 440/5-86-001. US EPA (1986b) Office of water regulations and standards, Washington, DC, 20460

    Google Scholar 

  • US EPA (2008) Nanotechnology for site remediation fact sheet. EPA 542-F-08-009

    Google Scholar 

  • Us EPA (2011) In situ oxidation: overview. Technology innovation and field services division. Washington, DC

    Google Scholar 

  • US Department of Health and Human Services toxicological profile for chromium (1993) Agency for toxic substances and diseases registry. US Department of commerce, Springfield, VA

    Google Scholar 

  • Valko M, Morris H, Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208. doi:10.0929/8673/05

    Article  CAS  Google Scholar 

  • Van der Zee FP, Cervantes FJ (2009) Impact and application of electron shuttles on the redox (bio) transformation of contaminants: A review. Biotechnol Adv 27:256–277. doi:10.1016/j.biotechadv.2009.01.004

    Article  CAS  Google Scholar 

  • Van Nooten T, Springael D, Bastiaens L (2008) Positive impact of microorganisms on the performance of laboratory-scale permeable reactive iron barriers. Environ Sci Technol 42:1680–1686. doi:10.1021/es071760d

    Article  CAS  Google Scholar 

  • Vasudevan S, Mohan S, Sozhan G, Raghavendran NS, Murugan CV (2006) Studies of oxidation of As (III) to As (V) by in situ-generated hypochlorite. Ind Eng Chem Res 45:7729–7732. doi:10.1021/ie060339f

    Article  CAS  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Vikesland PJ, Valentine RL (2002) Iron oxide surface-catalyzed oxidation of ferrous iron by monochloramine: Implications of oxide type and carbonate on reactivity. Environ Sci Technol 36:512–519. doi:10.1021/es010935v

    Article  CAS  Google Scholar 

  • Vikesland PJ, Heathcock AM, Rebodos RL, Makus KE (2007) Particle size and aggregation effects on magnetite reactivity toward carbon tetrachloride. Environ Sci Technol 41:5277–5283. doi:10.1021/es062082i

    Article  CAS  Google Scholar 

  • Violante A, Cozzolino V, Perelomov L, Caporale AG, Pigna M (2010) Mobility and bioavailability of heavy metals and metalloids in soil environments. J Plant Nutr Soil Sci 10(3):268–292. doi:10.4067/S0718-95162010000100005

    Article  Google Scholar 

  • Vogna D, Marotta R, Napolitano A, Andreozzi R, d’Ischia M (2004) Advanced oxidation of the pharmaceutical drug diclofenac with UV/H2O2 and ozone. Water Res 38:414–422. doi:10.1016/j.watres.2003.09.028

    Article  CAS  Google Scholar 

  • Wagner M, Brumelis D, Gehr R (2002) Disinfection of wastewater by hydrogen peroxide or peracetic acid: Development of procedures for measurement of residual disinfectant and application to a physico-chemically treated municipal effluent. Water Environ Res 74(1):33–50

    Article  CAS  Google Scholar 

  • Waldemer RH, Tratnyek PG (2006) Kinetics of contaminant degradation by permanganate. Environ Sci Technol 40:1055–1061. doi:10.1021/es051330s

    Article  CAS  Google Scholar 

  • Wang D, Shin JY, Cheney MA, Sposito G, Spiro TG (1999) Manganese dioxide as a catalyst for oxygen-independent atrazine dealkylation. Environ Sci Technol 33:3160–3165. doi:10.1021/es990419t

    Article  CAS  Google Scholar 

  • Wang L, Odeh IN, Margerum DW (2004) Chlorine dioxide reduction by aqueous iron(II) through outer-sphere and inner-sphere electron-transfer pathways. Inorg Chem 43:7545–7551. doi:10.1021/ic048809q

    Article  CAS  Google Scholar 

  • Wazne M, Jagupilla SC, Moon DH, Jagupilla SC, Christodoulatos C, Kim MG (2007) Assessment of calcium polysulfide for the remediation of hexavalent chromium in chromite ore processing residue (COPR). J Hazard Mater 143:620–628. doi:10.1016/j.jhazmat.2007.01.012

    Article  CAS  Google Scholar 

  • Wei C, Lin WY, Zainal Z, Williams NE, Zhu K, Kruzic AP, Smith RL, Rajeshwar K (1994) Bactericidal activity of TiO2 photocatalyst in aqueous media: toward a solar-assisted water disinfection system. Environ Sci Technol 28:934–938. doi:10.1021/es00054a027

    Article  CAS  Google Scholar 

  • Westerhoff P (2003) Reduction of nitrate, bromate, and chlorate by zero valent iron (Fe0). J Environ Eng 129:10–16. doi:10.1061/(ASCE)0733-9372(2003)129:1(10)

    Article  CAS  Google Scholar 

  • White GC (1992) Handbook of chlorination and alternative disinfectants. Van Nostrand Reinhold, New York, NY

    Google Scholar 

  • WHO (2000) Hazardous chemicals in human and environmental health: a resource book for school, college and university students. World Health Organization, Geneva

    Google Scholar 

  • Williams AGB, Scherer MM (2004) Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the iron oxide-water interface. Environ Sci Technol 38:4782–4790. doi:10.1021/es049373g

    Article  CAS  Google Scholar 

  • Wood RH (1958) The heat, free energy, and entropy of ferrate(VI) ion. J Am Chem Soc 80:2038–2041. doi:10.1021/ja01542a002

    Article  CAS  Google Scholar 

  • World Health Organization (2006) Guideline for drinking-water quality (first addendum to 3rd edition): Recommendations. WHO, Ganeva

    Google Scholar 

  • Wu JM, Peters RW (1995) Ultrasonic processes for remediation of organics-contaminated groundwater/wastewater. In: A&WMA’s international special conference “Challenges & innovations in the management of hazardous waste”, Washington, DC, 10–12 May

    Google Scholar 

  • Wu WM, Carley J, Gentry T, Ginder-Vogel MA, Fienen M, Mehlhorn T, Yan H, Caroll S, Pace MN, Nyman J, Luo J, Gentile ME, Fields MW, Hickey RF, Gu B, Watson D, Cirpka OA, Zhou J, Fendorf S, Kitanidis PK, Jardine PM, Criddle CS (2006) Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 2. Reduction of U(VI) and geochemical control of U(VI) bioavailability. Environ Sci Technol 40:3986–3995. doi:10.1021/es051960u

    Article  CAS  Google Scholar 

  • Wuanal RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 1–20. doi:10.5402/2011/402647

  • Yahikozawa K, Aratani T, Ito R, Sudo T, Yano T (1978) Kinetic studies on the lime sulfurated solution (calcium polysulfide) process for removal of heavy metals from wastewater. Bull Chem Soc Jpn 51:613–617. doi:10.1246/bcsj.51.613

    Article  CAS  Google Scholar 

  • Yang GCC (2009) Electrokinetic – chemical oxidation/reduction. In: Reddy KR, Cameselle C (eds) Electrochemical remediation technologies for polluted soils. Sediments and Groundwater. John Wiley & Sons, Inc., Hoboken, New Jersey, pp 439–462

    Chapter  Google Scholar 

  • Yang GCC, Liu C-Y (2001) Remediation of TCE contaminated soils by in situ EK-Fenton process. J Hazard Mater 85:317–331. doi:10.1016/S0304-3894(01)00288-6

    Article  CAS  Google Scholar 

  • Yang GCC, Yeh C-F (2011) Enhanced nano-Fe3O4/S2O8 2− oxidation of trichloroethylene in a clayey soil by electrokinetic. Sep Purif Technol 79:264–271. doi:10.1016/j.seppur.2011.03.003

    Article  CAS  Google Scholar 

  • Yanina SV, Rosso KM (2008) Linked reactivity at mineral-water interfaces through bulk crystal conduction. Science 320:218–222. doi:10.1126/science.1154833

    Article  CAS  Google Scholar 

  • Yap CL, Gan S, Ng HK (2011) Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere 83:1414–1430. doi:10.1016/j.chemosphere.2011.01.026

    Article  CAS  Google Scholar 

  • Yeung AT (2009) Remediation technologies for contaminated sites. In: Chen Y, Tang X, Zhan L (eds) Advances in environmental geotechnics. Zhejiang University Press, Hangzhou, pp 328–369

    Google Scholar 

  • Yeung AT, Gu Y-Y (2011) A review on techniques to enhance electrochemical remediation of contaminated soils. J Hazard Mater 195:11–29. doi:10.1016/j.jhazmat.2011.08.047

    Article  CAS  Google Scholar 

  • Yin Y, Allen HE (1999) In-situ chemical treatment. Technology evaluation report, TE-99-01. Ground-water remediation technologies analysis center, Pittsburg

    Google Scholar 

  • Yngard RA, Sharma VK, Philips J, Zboril R (2008) Ferrate(VI) oxidation of weak acid dissociable cyanides. Environ Sci Technol 42:3005–3010. doi:10.1021/es0720816

    Article  CAS  Google Scholar 

  • Yoon S, Lee K, Oh S, Yang J (2008) Photochemical oxidation of As (III) by vacuum-UV lamp irradiation. Water Res 42:3455–3463. doi:10.1016/j.watres.2008.04.018

    Article  CAS  Google Scholar 

  • Young CA, Jordan TS (1995) Cyanide remediation: current and past technologies. In: Erickson LE, Tillison DL, Grant SC, McDonald JP (eds) Proceedings of the 10th annual conference on hazardous waste research. Kansas State University, Manhattan, pp 104–129

    Google Scholar 

  • Yuan B-L, Qu J-H, Fu M-L (2002) Removal of cyanobacterial microcystin-LR by ferrate oxidation-coagulation. Toxicon 40:1129–1134. doi:10.1016/S0041-0101(02)00112-5

    Article  CAS  Google Scholar 

  • Zawaideh LL, Zhang TC (1998) The effects of pH and addition of an organic buffer (HEPES) on nitrate transformation in Fe(0)-water systems. Water Sci Technol 38:107–115. doi:10.1016/S0273-1223(98)00613-1

    Article  CAS  Google Scholar 

  • Zhang W-X (2003) Nanoscale iron particles for environmental remediation: An overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Zhang YQ, Moore JN, Frankenberger WT Jr (1999) Speciation of soluble selenium in agricultural drainage waters and aqueous soil-sediment extracts using hydride generation atomic absorption spectrometry. Environ Sci Technol 33:1652–1656. doi:10.1021/es9808649

    Article  CAS  Google Scholar 

  • Zhang H, Chen WR, Huang CH (2008) Kinetic modeling of oxidation of antimicrobial agents by manganese oxide. Environ Sci Technol 42:5548–5554. doi:10.1021/es703143g

    Article  CAS  Google Scholar 

  • Zhang M, He F, Zhao D, Hao X (2011) Degradation of soil-sorbed trichloroethylene by stabilized zero valent iron nanoparticles: effects of sorption, surfactants, and natural organic matter. Water Res 45:2401–2414. doi:10.1016/j.watres.2011.01.028

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Authors gratefully acknowledge CSIR, New Delhi {01(2538)/11/EMR-II}, and Ministry of Environment and Forest, Government of India, New Delhi (F. No. 19-15/2007-RE) for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar Tandon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tandon, P.K., Singh, S.B. (2015). Redox Processes in Water Remediation Technologies. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Hydrogen Production and Remediation of Carbon and Pollutants. Environmental Chemistry for a Sustainable World, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-19375-5_5

Download citation

Publish with us

Policies and ethics