Skip to main content

Carbon Sequestration in Terrestrial Ecosystems

  • Chapter

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 6))

Abstract

Global climate change has already had observable effects on the environment. For instance glaciers have shrunk, ice on rivers and lakes is breaking up earlier, lands are deteriorating, plant and animal ranges have shifted and trees are flowering sooner. Carbon emission is considered as the strongest factor for global warming. Removing atmospheric carbon and storing it in the terrestrial biosphere is one of the cost-effective options, to compensate greenhouse gas emissions. Millions of acres of abandoned mine land throughout the world, if restored and converted into vegetative land, would solve global warming and would remediate degraded wastelands. Reclamation of mining wastelands using an integrated biotechnological approach (IBA) has resulted in the improvement in the physico-chemical properties of the soil. The findings presented in this chapter may help the industries to achieve clean development mechanism status through afforestation of degraded lands as per the guidelines of United Nations Framework Convention on Climate Change.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anderson DW (1995) Decomposition of organic matter and carbon emissions from soils. In: Lal R, Kimble J, Levine E, Stewart BA (eds) Soils and global change. CRC Lewis Publishers, Boca Raton, pp 165–175

    Google Scholar 

  • Baldocchi DD, Hicks BB, Meyers TP (1988) Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69(5):1331–1340

    Article  Google Scholar 

  • Bangroo SA, Kirmani NA, Ali T, Wani M, Bhat MA, Bhat BI (2011) Adapting agriculture for enhancing eco-efficiency through soil carbon sequestration in agro-ecosystem. Res J Agric Sci 2(1):164–169

    Google Scholar 

  • Bazzaz FA, McConnaughay KDM (1992) Plant-plant interactions in elevated CO2 environments. Aust J Bot 40:547–563

    Article  CAS  Google Scholar 

  • Bazzaz FA, Jasienski M, Thoms SC, Wayne P (1995) Macro evolutionary responses in experimental populations of plants to CO2 enriched environments: parallel results from two model systems. Proc Natl Acad Sci U S A 92:8161–8165

    Article  CAS  Google Scholar 

  • Bolin B, Sukumar R, Ciais P, Cramer W, Jarvis P, Kheshgi H, Nobre C, Semenov S, Steffen W (2000) Global perspective. In: Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (eds) Land use, land use change and forestry: a special report of the IPCC. Cambridge University Press, Cambridge, pp 23–51

    Google Scholar 

  • Cole CV, Flach K, Lee J, Sauerbeck D, Stewart B (1993) Agricultural sources and sinks of carbon. Water Air Soil Pollut 70:111–122

    Article  CAS  Google Scholar 

  • Cole CV, Duxbury J, Freney J, Heinemeyer O, Minami K, Mosier A, Paustian K, Rosenberg N, Sampson N, Sauerbeck D, Zhao Q (1996) Agricultural options for mitigation of greenhouse gas emissions. In: Watson RT, Zinyowera MC, Moss RH, Dokken DJ (eds) IPCC working group II – impacts, adaptations, and mitigation of climate change: scientific-technical analyses. Cambridge University Press, Cambridge, pp 745–771

    Google Scholar 

  • Cook AC, Tissue DT, Roberts SW, Oechel WC (1998) Effects of long-term elevated (CO2) from natural CO2 springs on Nardus stricta: photosynthesis, biochemistry, growth and phenology. Plant Cell Environ 21:417–425

    Article  CAS  Google Scholar 

  • Couteaux MM, Kurz C, Bottner P, Aaschi A (1999) Influence of increased atmospheric CO2 concentration on quality of plant material and litter decomposition. Tree Physiol 19:301–311

    Article  Google Scholar 

  • Curtis PS, Drake BG, Leadley PW, Arp WJ, Whigham DF (1989) Growth and senescence in plant communities exposed to elevated CO2 concentrations on an estuarine marsh. Oecologia 78:20–26

    Article  Google Scholar 

  • Davidson EA, Ackerman IL (1993) Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry 20:161–164

    Article  CAS  Google Scholar 

  • Dippery JK, Tissue DT, Thomas RB, Strain BR (1995) Effects of low and elevated CO2 on C3 and C4 annuals. I. Growth and biomass allocation. Oecologia 101:13–20

    Article  Google Scholar 

  • Duquesnay A, Breda N, Stievenard M, Dupouey JL (1998) Changes of tree-ring and water-use efficiency of beech (Fagus sylvatica L.) in north-eastern France during the past century. Plant Cell Environ 21:565–572

    Article  Google Scholar 

  • Ehleringer JR, Cerling TE, Helliker BR (1997) C4 photosynthesis, atmospheric CO2 and climate. Oecologia 104:139–146

    Google Scholar 

  • Follett RF, Kimble JM, Lal R (2001) The potential for U.S. grazing lands to sequester carbon and mitigate the greenhouse effects. Lewis, Boca Raton

    Google Scholar 

  • Gebauer RLE, Reynolds JF, Strain BR (1996) Allometric relations and growth in Pinus taeda: the effect of elevated CO2 and changing N availability. New Phytol 134:85–93

    Article  Google Scholar 

  • Gloser J (1996) Impact of elevated CO2 concentration on interactions between seedlings of Norway spruce (picea abies) and perennial grass clamagrostis epigejos. In: Korner C, Bazzaz FA (eds) Carbon dioxide, populations, and communities. Academic Press, New York, pp 319–331

    Chapter  Google Scholar 

  • Goulden ML, Miller SD, Da Rocha HR, Menton MC, De Freitas HC, Figueira AMES, De Sousa CAD (2004) Diel and seasonal patterns of tropical forest CO2 exchange. Ecol Appl 14(4):S42–S54

    Article  Google Scholar 

  • Grace JY, Malhi J, Lloyd J, McIntyre AC, Miranda P, Meir P, Miranda HS (1996) The use of eddy covariance to infer the net carbon dioxide uptake of Brazilian rain forest. Glob Chang Biol 2:208–217

    Article  Google Scholar 

  • Harmon ME, Ferrel WK, Franklin JF (1990) Effects on carbon storage age of conversion of old-growth forests to young forests. Science 247:699–703

    Article  CAS  Google Scholar 

  • Harrison K, Broecker G, Bonani G (1993) The effect of changing land use on soils radiocarbon. Science 262:725–726

    Article  CAS  Google Scholar 

  • Houghton RA (1995a) Changes in the storage of terrestrial carbon since 1850. In: Lal R, Kimble J, Levine E, Stewart BA (eds) Soils and global changes. Lewis, Boca Raton, pp 45–65

    Google Scholar 

  • Houghton RA (1995b) Effects of land-use change, surface temperature, and CO2 concentration on terrestrial stores of carbon. In: Woodwell GM, MacKenzie ET (eds) Biotic feedbacks in the global climate systems. Oxford University Press, New York, pp 333–350

    Google Scholar 

  • IPCC (2000) Land use, land use change and forestry. In: Watson RT, Noble IR, Bolin B, Ravindranath NH, Verardo DJ, Dokken DJ (eds) A special report of the IPCC. Cambridge University Press, Cambridge, UK, 377 pp

    Google Scholar 

  • IPCC (2001) Climate change 2001: mitigation, contribution of working group III to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, MA

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007: the physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the IPCC. Cambridge University Press, Cambridge, UK, 996 pp

    Google Scholar 

  • IPCC Report (Intergovernmental Panel on Climate Change) (1996) Climate change 1995: impacts, adaptations and mitigation of climate change: scientific-technical analyses. In: Watson R, Zinyowera MC, Moss R (eds) Contribution of working group II to the second assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, 880 pp

    Google Scholar 

  • Jach ME, Ceulemans R (1999) Effects of elevated atmospheric CO2 on phenology, growth and crown structure of Socots pine (Pinus sylvestris) seedling after two years of exposure in the field. Tree Physiol 19:289–300

    Article  Google Scholar 

  • Janzen H, Cambell CA, Izaurralde RC, Ellert BH, Juma N, McGill WB, Zentner RP (1998) Management effect on soil C storage on the Canadian prairies. Soil Tillage Res 47:181–195

    Article  Google Scholar 

  • Johnson DW (1999) Simulated nitrogen cycling response to elevated CO2 in Pinus taeda. Tree Physiol 19:321–327

    Article  Google Scholar 

  • Jones HG (1992) Plants and microclimate: a quantitative approach to environmental plant physiology, 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Juwarkar AA, Jambhulkar HP (2008) Phytoremediation of coalmine spoil dump through integrated biotechnological approach. Bioresour Technol 99:4732–4741

    Article  CAS  Google Scholar 

  • Juwarkar AA, Dubey K, Khobragade R, Nimje M, Singh SK (2001) Integrated biotechnological approach for phytoremediation of copper mine spoil dumps and tailing. Paper published in proceeding of international conference on industrial pollution and control technologies (ICIPACT-2001), JNTU, Hyderabad, 7–10 Dec 2001

    Google Scholar 

  • Juwarkar AS, Juwarkar A, Khanna P (2004) Use of selected waste materials and biofertilizers for industrial solid waste reclamation. In: Twardowska I, Allen HE, Kettrup AAF, Lacy WJ (eds) Waste Management Series, vol 4. Elsevier, Amsterdam, pp 911–948

    Google Scholar 

  • Juwarkar AA, Mehrotraa KL, Rajani Nair, Wanjari T, Singh SK, Chakrabarti T (2010) Carbon sequestration in reclaimed manganese mine land at Gumgaon. India Environ Monit Assess 160:457–464

    Article  CAS  Google Scholar 

  • Kolchugina TP, Vinson TS, Gaston GG, Rozhkov VA, Shwidenko AZ (1995) Carbon pools, fluxes, and sequestration potential in soils of the former Soviet Union. In: Lal R, Kimble J, Levine E, Stewart BA (eds) Soil management and greenhouse effect. CRC Lewis Publishers, Boca Raton, pp 25–40

    Google Scholar 

  • Lal R, Kimble J, Follett R (1998) Land use and soil carbon pools in terrestrial ecosystems. In: Lal R, Kimble J, Follett RF, Stewart BA (eds) Management of carbon sequestration in soil. Lewis, Boca Raton, pp 1–8

    Google Scholar 

  • Larcher W (1995) Physiological plant ecology: ecophysiology and stress physiology of functional groups, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Larionova AA, Yermolayev AM, Blagodatsky SA, Rozanova LN, Yevdokimov IV, Orlinsky DB (1998) Soil respiration and carbon balance of gray forest soils as affected by land use. Biol Fertil Soils 27:251–257

    Article  CAS  Google Scholar 

  • Lewis JD, Lucash M, Olszyk D, Tingey DT (2001) Seasonal patterns of photosynthesis in Douglas fir seedlings during the third and fourth year of exposure to elevated CO2 and temperature. Plant Cell Environ 24:539–548

    Article  CAS  Google Scholar 

  • Li JH, Dijkstra P, Wheeler RM, Piastuch WC, Hinkle CR, Drake BG (2000) Leaf senescence of Quercus myrtifolia as affected by long–term CO2 enrichment in its native environment. Glob Change Biol 6:727–733

    Article  Google Scholar 

  • Long M (1999) Reforestration in the western stages. In Vories KC, Throgmorton D (ed) Enhancement of reforestration at surface coal mines: technical interactive forum. U.S. Department of Interior, Office of Surface Mining/Coal Research Center, SouthernIllinois University, Alton/Carbondale, pp 55–56

    Google Scholar 

  • Long SP, Drake BG (1991) Effect of the long-term elevation of CO2 concentration in the field on the quantum yield of photosynthesis of the C3 sedge Scripus olneyi. Plant Physiol 96:221–226

    Article  CAS  Google Scholar 

  • Long SP, Baker NR, Raines CA (1993) Analysing the responses of photosynthetic CO2 assimilation to long term elevation of atmospheric CO2 concentration. Vegetation 104(105):33–45

    Article  Google Scholar 

  • Malhi Y, Nobre AD, Grace J, Kruijt B, Pereira MGP, Culf A, Scott S (1998) Carbon dioxide transfer over a Central Amazonian rain forest. J Geophys Res Atmos 103:31593–31612

    Article  CAS  Google Scholar 

  • Massman WJ, Lee X (2002) Eddy covariance flux corrections and uncertainties in long term studies of carbon and energy. Agric For Meteorol 113:121–144

    Article  Google Scholar 

  • Mooney HA, Canadell J, Chapin FSI, Ehleringer JR, Körner C, McMurtrie RE, Parton WJ, Pitelka LF, Schulze ED (1999) Ecosystem physiology responses to global change. In: Walker B, Steffen W, Canadell J, Ingram J (eds) The terrestrial biosphere and global change. Cambridge University Press, Cambridge, pp 141–189

    Google Scholar 

  • Mosier AR (1998) Soil processes and global change. Biol Fertil Soils 27:221–229

    Article  CAS  Google Scholar 

  • Norby RJ, Cotrufo MF (1998) A question of litter quality. Nature 396:17–18

    Article  CAS  Google Scholar 

  • Norby RJ, O’Neill EG, Hood WG, Luxmoore RJ (1987) Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedling grown under CO2 enrichment. Tree Physiol 3:203–210

    Article  Google Scholar 

  • Oechel WC, Strain BR (1985) Native species responses to increased atmospheric carbon dioxide concentration. In: Strain BR, Cure JD (ed) Direct effects of increasing carbon dioxide on vegetation. Washington DC: US Department of Energy, Office of Basic Energy sciences, Carbon Dioxide Research Division, Springfield, pp 117–154

    Google Scholar 

  • Overdieck D, Reid C, Strain BR (1988) The Effects of pre-industrial and future CO2 concentration on growth, dry matter production and the C/N relationship in plants at low nutrient supply: Vigna unguiculata (cowpea), Abellmoschus esculentus (okra) and Raphanus sativus (radish). Botinak 62:119–134

    Google Scholar 

  • Owensby CE, Coyne PI, Ham JM, Auen LM, Knapp AK (1993) Biomass production in a tall grass prairie ecosystem exposed to ambient and elevated CO2. Ecol Appl 3:644–653

    Article  Google Scholar 

  • Paustian K, Andren O, Janzen HH, Lal R, Smith P, Tian G, Tiessen H, Vannooedwijk M, Woomer PL (1997) Agricultural soils as a sink to mitigate CO2 emissions. Soil Use Manag 13:230–240

    Article  Google Scholar 

  • Paustian K, Six J, Elliott ET, Hunt HW (2000) Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 48:147–163

    Article  CAS  Google Scholar 

  • Pfannenstiel V (1999) The arid and semiarid west. In: Voices KC, Throgmorton D (eds) Enhancement of reforestration at surface coal mines: technical interactive forum. U.S. Department of Interior, Office of Surface Mining/Coal Research Center, Southern Illinois University, Alton/Carbondale, pp 147–148

    Google Scholar 

  • Reichle D, Joughton J, Kane B, Kemann J (1999) Developing an emerging technology road map for carbon capture and sequestration. Carbon Sequestration Research and Development. USDOE Office of Science, Washington, DC; DOE/SC/FE-1

    Google Scholar 

  • Sage RF (1995) Was low atmospheric CO2 during the Pleistocene a limiting factor for the origin of agriculture? Glob Chang Biol 1:93–106

    Article  Google Scholar 

  • Scharpenseel HW, Becker-Heidmann P (1994) Sustainable land use in the light of resilience/elasticity to soil organic matter fluctuations. In: Greenland DJ, Szabolcs I (eds) Soil resilience and sustainable land use. CAB International, Wallingford, pp 249–264

    Google Scholar 

  • Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Glob Chang Biol 1:77–91

    Article  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic Press, New York, 588 p

    Google Scholar 

  • Scholes RJ, Van Breemen N (1997) The effects of global change on tropical ecosystems. Geoderma 79:9–24

    Article  Google Scholar 

  • Sims DA, Luo Y, Seemann JR (1998) Comparison of photosynthetic acclimation to elevated CO2 and limited nitrogen supply in soybean. Plant Cell Environ 21:945–952

    Article  Google Scholar 

  • Stitt M (1991) Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant Cell Environ 14:741–762

    Article  CAS  Google Scholar 

  • Strain BR (1985) Physiological and ecological controls on carbon sequestering in terrestrial ecosystems. Biogeochemistry 1:219–232

    Article  Google Scholar 

  • Thomas RB, Richter DD, Ye H, Heine PR, Strain BR (1991) Nitrogen dynamics and growth of seedlings of an N-fixing tree (Gliricidia sepium) exposed to elevated atmospheric carbon dioxide. Oecologia 88:415–421

    Article  Google Scholar 

  • Tissue DT, Megonigal JP, Thomas RB (1997a) Nitrogenase activity and N2 fixation are stimulated by elevated CO2 a tropical N2 fixing tree. Oecologia 109:28–33

    Article  Google Scholar 

  • Tissue DT, Thomas RB, Strain BR (1997b) Atmospheric CO2 enrichment increase growth and photosynthesis of Pinus taeda: a 4 year experiment in the field. Plant Cell Environ 20:1123–1134

    Article  Google Scholar 

  • Tissue DT, Griffin KL, Ball JT (1999) Photosynthetic adjustments in field-grown ponderosa pine trees after six years of exposure to elevated CO2. Tree Physiol 19:221–228

    Article  Google Scholar 

  • UNFCCC (UN Framework Convention on Climate Change) (1997) The Kyoto protocol to the United Nations Framework Convention on Climate Change. Document FCCC/CP/1997/7/Add.1. http://www.unfccc.de/

  • WBGU (Wissenschaftlicher Beirat Der Bundesregierung Globale Umweltveränderungen) (1998) Die Anrechnung biologischer Quellen und Senken im Kyoto-Protokoll: Fortschritt oder Rückschlag für den globalen Umweltschutz? Sondergutachten 1998, WBGU, Bremerhaven, p 76

    Google Scholar 

  • Wofsy SC, Goulden ML, Munger JW, Fan SM, Bakwin PS, Daube BC, Bassow SL, Bazzar FA (1993) Net exchange of CO2 in a mid-latitude forest. Science 260:1341–1317

    Article  Google Scholar 

  • Woodward FI (1987) Stomatal numbers are sensitive to increase in CO2 from pre-industrial levels. Nature 327:617–618

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, S.K., Thawale, P.R., Sharma, J.K., Gautam, R.K., Kundargi, G.P., Juwarkar, A.A. (2015). Carbon Sequestration in Terrestrial Ecosystems. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Hydrogen Production and Remediation of Carbon and Pollutants. Environmental Chemistry for a Sustainable World, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-19375-5_3

Download citation

Publish with us

Policies and ethics