Skip to main content

Hydrogen Production by Homogeneous Catalysis: Alcohol Acceptorless Dehydrogenation

  • Chapter
Hydrogen Production and Remediation of Carbon and Pollutants

Part of the book series: Environmental Chemistry for a Sustainable World ((ECSW,volume 6))

Abstract

The lifestyle in the modern western world is highly depending on the accessibility of energy and bulk chemicals. Energy is needed in the transportation sector, but also domestic and industrial consumptions of energy is comprehensive. Bulk chemicals are probably more important than people realize, and are fundamental for the thrive of almost all business fields. The latter include the industries of agriculture, food additives, pharmaceuticals, electronics, plastic, fragrances, and more. Today, the major source of both energy and bulk chemicals is fossil fuels, being responsible for more than 80 % of the energy supplies. The large amounts of CO2 release owing to fossil fuel usage is believed to cause global warming on the long term, a highly undesired environmental consequence. Hence, it is of critical importance that alternative sources are developed and implemented in the society. One suggested solution for the energy sector is the application of a hydrogen economy, which transform the chemical energy in water and/or biomass into hydrogen. Considered as an energy carrier, hydrogen is then transported to the site of use where fuel cells convert its chemical energy into electricity.

Here, we review the progress in hydrogen production from biomass using homogeneous catalysis. Homogeneous catalysis has the advance of generally performing transformations at much milder conditions than traditional heterogeneous catalysis, and hence it constitutes a promising tool for future applications for a sustainable energy sector. In particular, only alcohol containing substances are covered. As such, alcohol acceptorless dehydrogenation (AAD) is the main topic of this review. Moreover, it is more easily investigated for eluding mechanistic property.

This review is divided up in four main chapters according to substrates. The first chapter, Model Substrates, describes the development of alcohol acceptorless dehydrogenation using substrates that can be categorized as model substrates. This includes e.g. isopropanol. The second chapter, Substrates with Synthetic Applications, deals with synthetic applications of alcohol acceptorless dehydrogenation. The third chapter, Biorelevant Substrates, concentrates on the use of alcohols such as ethanol, which are biomass related. The topic is alcohol acceptorless dehydrogenation reactions for both H2 production and the concurrent synthetic application. Finally, Chap. 4, Substrates for H2 Storage, is focusing on the use of alcohol acceptorless dehydrogenation of alcohols relevant as future H2 storage molecules. This is in particular methanol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAD:

Alcohol acceptorless dehydrogenation

Ampy:

Aminopyridine

A-PNP:

Acridine-phosphine, nitrogen, phosphine

BINAP:

2,2′-bis(diphenylphosphino)-1,1′-binaphthyl

Bipy:

Bipyridine

COD:

1,5-cyclooctadiene

Cp:

Cyclopentadienyl

Cp*:

Pentamethylcyclopentadienyl

Cyp:

Cyclopentyl

DABCO:

1,4-diazabicyclo[2.2.2]octane

Dbbb:

1,4-Bis(diphenylphosphino)butane

Dbf:

Dibenzofuran

Dme:

Dimethoxyethane

DPEN:

1,2-diphenyl-1,2-ethylenediamine

Dppf:

Bis(diphenylphosphino)ferrocene

Dppm:

Bis(diphenylphosphino)methane

En:

Ethylenediamine

MPV:

Meerwein-Ponndorf-Verley

MS:

Molecular sieves

N-ligand:

Nitrogen ligand

OPP:

Oppenauer oxidation

OTf:

Triflate

PC sp3P:

Phosphine, carbon (sp3-hybridized), phosphine

PCP:

Phosphine, carbon, phosphine

P-ligand:

Phospine ligand

PNN:

Phosphine, nitrogen, nitrogen

PNP:

Phosphine, nitrogen, phosphine

Ppb:

Parts per billion

Ppm:

Parts per million

TMEDA:

Tetramethylethylenediamine

TOF:

Turnover frequency

ToM :

Tris(4,4-dimethyl-2-oxazolinyl)phenylborate

TON:

Turnover number

Tpy:

Terpyridine

v/v:

Volume/volume

wt.%:

Weight%

References

  • Adair GRA, Williams JMJ (2005) Oxidant-free oxidation: ruthenium catalysed dehydrogenation of alcohols. Tetrahedron Lett 46:8233–8235

    Article  CAS  Google Scholar 

  • Allen CL, Williams JMJ (2011) Metal-catalysed approaches to amide bond formation. Chem Soc Rev 40:3405–3415

    Article  CAS  Google Scholar 

  • Arakawa H, Sugi Y (1981) The photocatalytic dehydrogenation of 2-propanol by using RhCl(PPh3)3. Chem Lett 10(9):1323–1326

    Article  Google Scholar 

  • Baratta W, Bossi G, Putignano E, Rigo P (2011) Pincer and diamine Ru and Os diphosphane complexes as efficient catalysts for the dehydrogenation of alcohols to ketones. Chem Eur J 17:3474–3481

    Article  CAS  Google Scholar 

  • Bertoli M, Choualeb A, Lough AJ, Moore B, Spasyuk D, Gusev DG (2011) Osmium and ruthenium catalysts for dehydrogenation of alcohols. Organometallics 30(13):3479–3482

    Article  CAS  Google Scholar 

  • Blum Y, Shvo Y (1984a) Catalytic oxidation of alcohols to esters with Ru3(CO)12. J Organomet Chem 263:93–107

    Article  CAS  Google Scholar 

  • Blum Y, Shvo Y (1984b) Catalytically reactive ruthenium intermediates in the homogeneous oxidation of alcohols to esters. Isr J Chem 24(2):144–148

    Article  CAS  Google Scholar 

  • Blum Y, Shvo Y (1985) Catalytically reactive (η4-tetracycloe)(CO)2(H)2Ru and related complexes in dehydrogenation of alcohols to esters. J Organomet Chem 282:C7–C10

    Article  CAS  Google Scholar 

  • Charman HB (1966) Hydride transfer reactions catalyzed metal complexes. Nature 212(5059):278–279

    Article  CAS  Google Scholar 

  • Charman HB (1967) Hydride transfer reactions catalysed by metal complexes. J Chem Soc (B) (6):629–632

    Google Scholar 

  • Charman HB (1970) Hydride transfer reactions catalyzed by rhodium-tin complexes. J Chem Soc (B) (4):584–587

    Google Scholar 

  • Chen C, Hong SH (2011) Oxidative amide synthesis directly from alcohols and amines. Org Biomol Chem 9:20–26

    Article  CAS  Google Scholar 

  • Chen C, Zhang Y, Hong SH (2011) N-heterocyclic carbene based ruthenium-catalyzed direct amide synthesis from alcohols and secondary amines: involvement of esters. J Org Chem 76:10005–10010

    Article  CAS  Google Scholar 

  • Choi JH, Kim N, Shin YJ, Park JH, Park J (2004) Heterogeneous Shvo-type ruthenium catalyst: dehydrogenation of alcohol without hydrogen acceptors. Tetrahedron Lett 45(24):4607–4610

    Article  CAS  Google Scholar 

  • Crabtree RH (2011) An organometallic future in green and energy chemistry? Organometallics 30:17–19

    Article  CAS  Google Scholar 

  • Dam JH, Osztrovszky G, Nordstrøm LU, Madsen R (2010) Amide synthesis from alcohols and amines catalyzed by ruthenium N-heterocyclic carbene complexes. Chem Eur J 16:6820–6827

    Article  CAS  Google Scholar 

  • Dobereiner GE, Crabtree RH (2010) Dehydrogenation as a substrate-activating strategy in homogeneous transition-metal catalysis. Chem Rev 110:681–703

    Article  CAS  Google Scholar 

  • Dobson A, Robinson SD (1975) Catalytic dehydrogenation of primary and secondary alcohols by Ru(OCOCF3)2(CO)(PPh3)2. J Organomet Chem 87:C52–C53

    Article  CAS  Google Scholar 

  • Dobson A, Robinson SD (1977) Complexes of the platinum metals. 7. Homogeneous ruthenium and osmium catalysts for the dehydrogenation of primary and secondary alcohols. Inorg Chem 16(1):137–142

    Article  CAS  Google Scholar 

  • Esteruelas MA, Honczek N, Oliván M, Oñate E, Valencia M (2011) Direct access to POP-type osmium(II) and osmium(IV) complexes: osmiuma promising alternative to ruthenium for the synthesis of imines from alcohols and amines. Organometallics 30:2468–2471

    Article  CAS  Google Scholar 

  • Filho RCDM, Miranda de Moura E, Araújo de Souza A, Rocha WR (2007) Methanol dehydrogenation promoted by a heterobimetallic Ru(II)–Sn(II) complex as catalyst: a density functional study. J Mol Struct (THEOCHEM) 816:77–84

    Article  CAS  Google Scholar 

  • Friedrich A, Schneider S (2009) Acceptorless dehydrogenation of alcohols: perspectives for synthesis and H2 storage. ChemCatChem 1:72–73

    Article  CAS  Google Scholar 

  • Fujii T, Saito Y (1991) Catalytic dehydrogenation of methanol with ruthenium complexes. J Mol Catal 67:185–190

    Article  CAS  Google Scholar 

  • Fujita K, Furukawa S, Yamaguchi R (2002a) Oxidation of primary and secondary alcohols catalyzed by a pentamethylcyclopentadienyliridium complex. J Organomet Chem 649(2):289–292

    Article  CAS  Google Scholar 

  • Fujita K, Yamamoto K, Yamaguchi R (2002b) Oxidative cyclization of amino alcohols catalyzed by a Cp*Ir complex. Synthesis of indoles, 1,2,3,4-tetrahydrydoquinolines, and 2,3,4,5-tetrahydro-1-benzazepine. Org Lett 4(16):2691–2694

    Article  CAS  Google Scholar 

  • Fujita K, Tanino N, Yamaguchi R (2007) Ligand-promoted dehydrogenation of alcohols catalyzed by Cp*Ir complexes. A new catalytic system for oxidant-free oxidation of alcohols. Org Lett 9(1):109–111

    Article  CAS  Google Scholar 

  • Fujita K, Yoshida T, Imori Y, Yamaguchi R (2011) Dehydrogenative oxidation of primary and secondary alcohols catalyzed by a Cp*Ir complex having a functional C, N-chelate ligand. Org Lett 13(9):2278–2281

    Article  CAS  Google Scholar 

  • Gargir M, Ben-David Y, Leitus G, Diskin-Posner Y, Shimon LJW, Milstein D (2012) PNS-type ruthenium pincer complexes. Organometallics 31:6207–6214

    Article  CAS  Google Scholar 

  • Ghosh S, Hong SH (2010) Simple RuCl3-catalyzed amide synthesis from alcohols and amines. Eur J Org Chem 2010:4266–4270

    Article  CAS  Google Scholar 

  • Ghosh SC, Muthaiah S, Zhang Y, Xu X, Hong SH (2009) Direct amide synthesis from alcohols and amines by phosphine-free ruthenium catalyst systems. Adv Synth Catal 351:2643–2649

    Article  CAS  Google Scholar 

  • Gnanaprakasam B, Ben-David Y, Milstein D (2010a) Ruthenium pincer-catalyzed acylation of alcohols using esters with liberation of hydrogen under neutral conditions. Adv Synth Catal 352:3169–3173

    Article  CAS  Google Scholar 

  • Gnanaprakasam B, Zhang J, Milstein D (2010b) Direct synthesis of imines from alcohols and amines with liberation of H2. Angew Chem Int Ed 49:1468–1471

    Article  CAS  Google Scholar 

  • Gnanaprakasam B, Balaraman E, Ben-David Y, Milstein D (2011) Synthesis of peptides and pyrazines from β-amino alcohols through extrusion of H2 catalyzed by ruthenium pincer complexes: ligand-controlled selectivity. Angew Chem Int Ed 50:12240–12244

    Article  CAS  Google Scholar 

  • Gnanaprakasam B, Balaraman E, Gunanathan C, Milstein D (2012) Synthesis of polyamides from diols and diamines with liberation of H2. J Polym Sci A Polym Chem 50:1755–1765

    Article  CAS  Google Scholar 

  • Griggs CG, Smith DJH (1984) Photocatalytic dehydrogenation of propan-2-ol using rhodium based catalysts. J Organomet Chem 273(1):105–109

    Article  CAS  Google Scholar 

  • Gunanathan C, Milstein D (2011) Metal-ligand cooperation by aromatization-dearomatization: a new paradigm in bond activation and “Green” catalysis. Acc Chem Res 44(8):588–602

    Article  CAS  Google Scholar 

  • Gunanathan C, Ben-David Y, Milstein D (2007) Direct synthesis of amides from alcohols and amines with liberation of H2. Science 317:790–792

    Article  CAS  Google Scholar 

  • Gunanathan C, Shimon LJW, Milstein D (2009) Direct conversion of alcohols to acetals and H2 catalyzed by an acridine-based ruthenium pincer complex. J Am Chem Soc 131:3146–3147

    Article  CAS  Google Scholar 

  • Hamid MHSA, Slatford PA, Williams JMJ (2007) Borrowing hydrogen in the activation of alcohols. Adv Synth Catal 349(10):1555–1575

    Article  CAS  Google Scholar 

  • He L-P, Chen T, Gong D, Lai Z, Huang K-W (2012) Enhanced reactivities toward amines by introducing an imine arm to the pincer ligand: direct coupling of two amines to form an imine without oxidant. Organometallics 31(14):5208–5211

    Article  CAS  Google Scholar 

  • Ho H-A, Manna K, Sadow AD (2012) Acceptorless photocatalytic dehydrogenation for alcohol decarbonylation and imine synthesis. Angew Chem Int Ed 51:8607–8610

    Article  CAS  Google Scholar 

  • Irie R, Li X, Saito Y (1983) Photocatalytic dehydrogenation of secondary alcohols with rhodium porphyrin complex. J Mol Catal 18(3):263–265

    Article  CAS  Google Scholar 

  • Itagaki H, Saito Y, Shinoda S (1987) Transition metal homogeneous catalysis for liquid-phase dehydrogenation of methanol. J Mol Catal 41(1–2):209–220

    Article  CAS  Google Scholar 

  • Itagaki H, Shinoda S, Saito Y (1988) Liquid-phase dehydrogenatio of methanol with homogeneous ruthenium complex catalysts. Bull Chem Soc Jpn 61(7):2291–2294

    Article  CAS  Google Scholar 

  • Itagaki H, Koga N, Morokuma K, Saito Y (1993) An ab initio MO study on two possible stereochemical reaction paths for methanol dehydrogenation with Ru(OAc)Cl(PEtPh2)3. Organometallics 12:1648–1654

    Article  CAS  Google Scholar 

  • Johansson AJ, Zuidema E, Bolm C (2010) On the mechanism of ruthenium-catalyzed formation of hydrogen from alcohols: a DFT study. Chem Eur J 16:13487–13499

    Article  CAS  Google Scholar 

  • Johnson TC, Morris DJ, Wills M (2010) Hydrogen generation from formic acid and alcohols using homogeneous catalysts. Chem Soc Rev 39:81–88

    Article  CAS  Google Scholar 

  • Jung CW, Garrou PE (1982) Dehydrogenation of alcohols and hydrogenation of aldehydes using homogeneous ruthenium catalysts. Organometallics 1(4):658–666

    Article  CAS  Google Scholar 

  • Junge H, Beller M (2005) Ruthenium-catalyzes generation of hydrogen from iso-propanol. Tetrahedron Lett 46(6):1031–1034

    Article  CAS  Google Scholar 

  • Junge H, Loges B, Beller M (2007) Novel improved ruthenium catalysts for the generation of hydrogen from alcohols. Chem Commun 522–524

    Google Scholar 

  • Karvembu R, Prabhakaran R, Natarajan K (2005) Shvo’s diruthenium complex: a robust catalyst. Coord Chem Rev 249(9–10):911–918

    Article  CAS  Google Scholar 

  • Kawahara R, Fujita K, Yamaguchi R (2012) Dehydrogenative oxidation of alcohols in aqueous media using water-soluble and reusable Cp*Ir catalysts bearing a functional bipyridine ligand. J Am Chem Soc 134:3643–3646

    Article  CAS  Google Scholar 

  • Kossoy E, Diskin-Posner Y, Leitus G, Milstein G (2012) Selective acceptorless conversion of primary alcohols to acetals and dihydrogen catalyzed by the ruthenium(II) complex Ru(PPh3)2(NCCH3)2(SO4). Adv Synth Catal 354:497–504

    Article  CAS  Google Scholar 

  • Li X, Shinoda S, Saito Y (1989) Photocatalytic liquid-phase dehydrogenation of cyclohexanol with rhodium porphyrin complex. J Mol Catal 49(2):113–119

    Article  CAS  Google Scholar 

  • Li H, Lu G, Jiang J, Huang F, Wang Z-W (2011a) Computational mechanistic study on Cp*Ir complex-mediated acceptorless AAD: bifunctional hydrogen transfer vs β-H elimination. Organometallics 30:2349–2363

    Article  CAS  Google Scholar 

  • Li H, Wang X, Huang F, Lu G, Jiang J, Wang Z-X (2011b) Computational study on the catalytic role of pincer ruthenium(II)-PNN complex in directly synthesizing amide from alcohol and amine: the origin of selectivity of amide over ester and imine. Organometallics 30:5233–5247

    Article  CAS  Google Scholar 

  • Ligthart GBWL, Meijer RH, Donners MPJ, Meuldijk J, Vekemans JAJM, Hulshof LA (2003) Highly sustainable catalytic dehydrogenation of alcohols with evolution of hydrogen gas. Tetrahedron Lett 44(7):1507–1509

    Article  CAS  Google Scholar 

  • Lin Y, Ma D, Lu X (1987) Iridium pentahydride complex catalyzed dehydrogenation of alcohols in the absence of a hydrogen acceptor. Tetrahedron Lett 28(27):3115–3118

    Article  CAS  Google Scholar 

  • Maenaka Y, Suenobu T, Fukuzumi S (2012) Hydrogen evolution from aliphatic alcohols and 1,4-selective hydrogenation of NAD+ catalyzed by a [C, N] and a [C, C] cyclometalated organoiridium complex at room temperature in water. J Am Chem Soc 134(22):9417–9427

    Article  CAS  Google Scholar 

  • Maggi A, Madsen R (2012) Dehydrogenative synthesis of imines from alcohols and amines catalyzed by a ruthenium N-heterocyclic carbene complex. Organometallics 31:451–455

    Article  CAS  Google Scholar 

  • Makita K, Nomura K, Saito Y (1993) Photocatalytic dehydrogenation of methanol using [IrH(SnC13)5]3− complex. J Mol Catal 89(1–2):143–149

    Google Scholar 

  • Marr AC (2012) Organometallic hydrogen transfer and dehydrogenation catalysts for the conversion of bio-renewable alcohols. Catal Sci Technol 2:279–287

    Article  CAS  Google Scholar 

  • Matsubara T, Saito Y (1994) Catalysis of phosphine-coordinated rhodium(I) complexes for 2-propanol dehydrogenation. J Mol Catal 92:1–8

    Article  CAS  Google Scholar 

  • Milstein D (2010) Discovery of environmentally benign catalytic reaction of alcohols catalyzed by pyridine-based pincer Ru compexes, based on metal-ligand cooperation. Top Catal 53:915–923

    Article  CAS  Google Scholar 

  • Monrad RN, Madsen R (2011) Ruthenium-catalysed synthesis of 2- and 3-substituted quinolines from anilines and 1,3-diols. Org Biomol Chem 9:610–615

    Article  CAS  Google Scholar 

  • Montag M, Zhang J, Milstein D (2012) Aldehyde binding through reversible C─C coupling with the pincer ligand upon AAD by a PNP−ruthenium catalyst. J Am Chem Soc 134:10325–10328

    Article  CAS  Google Scholar 

  • Moriyama H, Aoki T, Shinoda S, Saito Y (1982) Photoenhanced catalytic dehydrogenation of propan-2-ol with homogeneous rhodium-tin complexes. J Chem Soc Perkin Trans II:369–374

    Article  Google Scholar 

  • Morton D, Cole-Hamilton DJ (1987) Rapid thermal hydrogen production from alcohols catalysed by [Rh(2,2′-bipyridyl)2]Cl. J Chem Soc Chem Commun 248–249

    Google Scholar 

  • Morton D, Cole-Hamilton DJ (1988) Molecular hydrogen complexes in catalysis: highly efficient hydrogen production from alcoholic substrates catalysed by ruthenium complexes. J Chem Soc Chem Commun 1154–1156

    Google Scholar 

  • Morton D, Cole-Hamilton DJ, Schofield JA, Pryce RJ (1987) Rapid thermal hydrogen production from 2,3-butanediol catalyzed by homogeneous rhodium catalysis. Polyhedron 6(12):2187–2189

    Article  CAS  Google Scholar 

  • Morton D, Cole-Hamilton DJ, Utuk ID, Paneque-Sosa M, Lopez-Poveda M (1989) Hydrogen production from ethanol catalysed by group 8 metal complexes. J Chem Soc Dalton Trans 489–495

    Google Scholar 

  • Murahashi S-I, Ito K, Naota T, Maeda Y (1981) Ruthenium catalyzed transformation of alcohols to esters and lactones. Tetrahedron Lett 22(52):5327–5330

    Article  CAS  Google Scholar 

  • Murahashi S-I, Naota T, Ito K, Madea Y, Taki H (1987) Ruthenium-catalyzed oxidative transformation of alcohols and aldehydes to esters and lactones. J Org Chem 52:4319–4327

    Article  CAS  Google Scholar 

  • Musa S, Shaposhnikov I, Cohen S, Gelman D (2011) Ligand-metal cooperation in PCP pincer complexes: rational design and catalytic activity in acceptorless dehydrogenation of alcohols. Angew Chem Int Ed 50:3533–3537

    Article  CAS  Google Scholar 

  • Muthaiah S, Hong SH (2011) Atom-economical synthesis of cyclic imides. Synlett 11:1481–1485

    Google Scholar 

  • Muthaiah S, Ghosh SC, Jee J-E, Chen C, Zhang J, Hong SH (2010) Direct amide synthesis from either alcohols or aldehydes with amines: activity of Ru(II) hydride and Ru(0) complexes. J Org Chem 75:3002–3006

    Article  CAS  Google Scholar 

  • Nielsen M, Kammer A, Cozzula D, Junge H, Gladiali S, Beller M (2011) Efficient hydrogen production from alcohols under mild reaction conditions. Angew Chem Int Ed 50(41):9593–9597

    Article  CAS  Google Scholar 

  • Nielsen M, Junge H, Kammer A, Beller M (2012) Towards a green process for bulk-scale synthesis of ethyl acetate: efficient acceptorless dehydrogenation of ethanol. Angew Chem Int Ed 51(23):5711–5713

    Article  CAS  Google Scholar 

  • Nielsen M, Alberico A, Baumann W, Drexler H-J, Junge H, Beller M (2013) Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide. Nature 495:85–89

    Article  CAS  Google Scholar 

  • Nomura K, Saito Y, Shonida S (1989a) Photoenhanced catalytic dehydrogenation of methanol with tin(II)-coordinated iridium complexes. J Mol Catal 50(3):303–313

    Article  CAS  Google Scholar 

  • Nomura K, Saito Y, Shinoda S (1989b) Photocatalytic dehydrogenation of 2-propanol with carbonyl(halogen)phosphine-rhodium complexes. J Mol Catal 52(1):99–111

    Article  CAS  Google Scholar 

  • Nordstrøm LU, Vogt H, Madsen R (2008) Amide synthesis from alcohols and amines by the extrusion of dihydrogen. J Am Chem Soc 130:17672–17673

    Article  CAS  Google Scholar 

  • Nova A, Balcells D, Schley ND, Dobereiner GE, Crabtree RH, Eisenstein O (2010) An experimental–theoretical study of the factors that affect the switch between ruthenium-catalyzed dehydrogenative amide formation versus amine alkylation. Organometallics 29:6548–6558

    Article  CAS  Google Scholar 

  • Pattabiraman VR, Bode JW (2011) Rethinking amide bond synthesis. Nature 480:471–479

    Article  CAS  Google Scholar 

  • Prades A, Peris E, Albrecht M (2011) Oxidations and oxidative couplings catalyzed by triazolylidene ruthenium complexes. Organometallics 30:1162–1167

    Article  CAS  Google Scholar 

  • Prechtl MHG, Wobser K, Theyssen N, Ben-David Y, Milstein D, Leitner W (2012) Direct coupling of alcohols to form esters and amides with evolution of H2 using in situ formed ruthenium catalysts. Catal Sci Technol 2:2039–2042

    Article  CAS  Google Scholar 

  • Rigoli JW, Moyer SA, Pearce SD, Schomaker JM (2012) α, β-unsaturated imines via Ru-catalyzed coupling of allylic alcohols and amines. Org Biomol Chem 10:1746–1749

    Article  CAS  Google Scholar 

  • Robles-Dutenhefner PA, Moura EM, Gama GJ, Siebald HGL, Gusevskaya EV (2000) Synthesis of methyl acetate from methanol catalyzed by [(η5-C5H5)(phosphine)2RuX] and [(η5-C5H5)(phosphine)2Ru(SnX3)] (XDF, Cl, Br): ligand effect. J Mol Catal A Chem 164:39–47

    Article  CAS  Google Scholar 

  • Rodríguez-Lugo RE, Trincado M, Vogt M, Tewes F, Santiso-Quinones G, Grützmacher H (2013) A homogeneous transition metal complex for clean hydrogen production from methanol-water mixtures. Nat Chem 5:342–347

    Article  CAS  Google Scholar 

  • Roundhill DM (1985) J Am Chem Soc 107:4354–4356

    Google Scholar 

  • Royer AM, Rauchfuss TB, Gray DL (2010) Organoiridium pyridonates and their role in the dehydrogenation of alcohols. Organometallics 29(24):6763–6768

    Article  CAS  Google Scholar 

  • Rybak WK, Ziółkowski JJ (1981) Dehydrogenation of alcohols catalysed by polystyrene-supported ruthenium complexes. J Mol Catal 11:365–370

    Article  CAS  Google Scholar 

  • Schley ND, Dobereiner GE, Crabtree RH (2011) Oxidative synthesis of amides and pyrroles via dehydrogenative alcohol oxidation by ruthenium disphosphine diamine complexes. Organometallics 30:4174–4179

    Article  CAS  Google Scholar 

  • Schneider N, Finger M, Haferkemper C, Bellemin-Laponnaz S, Hofmann P, Gade LH (2009) Multiple reaction pathways in rhodium-catalyzed hydrosilylations of ketones. Chem Eur J 15(43):11515–11529

    Article  CAS  Google Scholar 

  • Shahane S, Fischmeister C, Bruneau C (2012) Acceptorless ruthenium catalyzed dehydrogenation of alcohols to ketones and esters. Catal Sci Technol 2:1425–1428

    Article  CAS  Google Scholar 

  • Shinoda S, Yamakawa T (1990) One-step formation of methyl acetate with methanol used as the sole source and catalysis by Rull-Snll cluster complexes. J Chem Soc Chem Commun 1511–1512

    Google Scholar 

  • Shinoda S, Moriyama H, Kise Y, Saito Y (1978) Photo-enhanced production of hydrogen by liquid -phase catalytic dehydrogenation of propan-2-01 with rhodium-tin chloride complexes. J Chem Soc Chem Commun 348–349

    Google Scholar 

  • Shinoda S, Kojima T, Saito Y (1983) Rh2(OAc)4-PPh3 as a catalyst for the liquid-phase dehydrogenation of 2-propanol. J Mol Catal 18:99–104

    Article  CAS  Google Scholar 

  • Shinoda S, Itagaki H, Saito Y (1985) Dehydrogenation of methanol in the liquid phase with a homogeneous ruthenium complex catalyst. J Chem Soc Chem Commun 13:860–861

    Article  Google Scholar 

  • Shinoda S, Ohnishi T, Yamakawa T (1997) Single-step synthesis of acetic acid (methyl acetate) from methanol alone by Ru(II) – Sn(II) hetero-bimetallic catalysts. Catal Surv Jpn 1:25–34

    Article  CAS  Google Scholar 

  • Sieffert N, Bühl M (2010) Hydrogen generation from alcohols catalyzed by ruthenium-triphenylphosphine complexes: multiple reaction pathways. J Am Chem Soc 132:8056–8070

    Article  CAS  Google Scholar 

  • Smith TA, Aplin RP, Maitlis PM (1985) The ruthenium-catalysed conversion of methanol into methyl formate. J Organomet Chem 291:C13–C14

    Article  CAS  Google Scholar 

  • Sølvhøj A, Madsen R (2011) Dehydrogenative coupling of primary alcohols to form esters catalyzed by a ruthenium N-heterocyclic carbene complex. Organometallics 30:6044–6048

    Article  CAS  Google Scholar 

  • Spasyuk D, Gusev DG (2012) Acceptorless dehydrogenative coupling of ethanol and hydrogenation of esters and imines. Organometallics 31(15):5239–5242

    Article  CAS  Google Scholar 

  • Spasyuk D, Smith S, Gusev DG (2012) From esters to alcohols and back with ruthenium and osmium catalysts. Angew Chem Int Ed 51(11):2772–2775

    Article  CAS  Google Scholar 

  • Srimani D, Balaraman E, Gnanaprakasam B, Ben-David Y, Milstein D (2012) Ruthenium pincer-catalyzed cross-dehydrogenative coupling of primary alcohols with secondary alcohols under neutral conditions. Adv Synth Catal 354:2403–2406

    Article  CAS  Google Scholar 

  • Strohmeier W, Hitzel E, Kraft B (1977) Comparison between homogeneous catalysts and their heterogenised counterparts. J Mol Catal 3(1–3):61–69

    Article  CAS  Google Scholar 

  • Takahashi T, Shinoda S, Saito Y (1985) The mechanism of photocatalytic dehydrogenation of methanol in the liquid phase with cis-[Rh2Cl2(CO)2(dpm)2] complex catalyst. J Mol Catal 31(3):301–309

    Article  CAS  Google Scholar 

  • van Buijtenen J, Meuldijk J, Vekemans JAJM, Hulshof LA, Kooijman H, Spek AL (2006) Dinuclear ruthenium complexes bearing dicarboxylate and phosphine ligands. Acceptorless catalytic dehydrogenation of 1-phenylethanol. Organometallics 25:873–881

    Article  CAS  Google Scholar 

  • Walton JA, Williams JMJ (2010) The give and take of alcohol activation. Science 329(5992):635–636

    Article  CAS  Google Scholar 

  • Watson AJA, Maxwell AC, Williams JMJ (2011) Borrowing hydrogen methodology for amine synthesis under solvent-free microwave conditions. J Org Chem 76:2328–2331

    Article  CAS  Google Scholar 

  • Yamakawa T, Miyake H, Moriyama H, Shinoda S, Satio Y (1986) Energy-storing photocatalysis of transition metal complexes with high quantum efficiency. J Chem Soc Chem Commun 326–327

    Google Scholar 

  • Yamakawa T, Katsurao T, Shinoda S, Saito Y (1987) Photocatalysis of trans-[RhCl(CO)(PPh3)2] under MLCT irradiation for 2-propanol dehydrogenation. J Mol Catal 42(2):183–186

    Article  CAS  Google Scholar 

  • Yamamoto H, Shinoda S, Saito Y (1985) Photocatalytic dehydrogenation of methanol in the liquid phase with cis-Rh2Cl2(CO)2(dpm)2 and PdCl2(dpm)2 complex catalysts. J Mol Catal 30(1–2):259–266

    Article  CAS  Google Scholar 

  • Yang L-C, Ishida T, Yamakawa T, Shinoda S (1996) Mechanistic study on dehydrogenation of methanol with [RuCl2(PR3)3]-type catalyst in homogeneous solutions. J Mol Catal A Chem 108(2):87–93

    Article  CAS  Google Scholar 

  • Zassinovich G, Mestroni G, Gladiali S (1992) Asymmetric hydrogen transfer reactions promoted by homogeneous transition metal catalysts. Chem Rev 92(5):1051–1069

    Article  CAS  Google Scholar 

  • Zeng H, Guan Z (2011) Direct synthesis of polyamides via catalytic dehydrogenation of diols and diamines. J Am Chem Soc 133:1159–1161

    Article  CAS  Google Scholar 

  • Zhang J, Gandelman M, Shimon LJW, Rozenberg H, Milstein D (2004) Electron-rich bulky ruthenium PNP-type complexes acceptorless catalytic AAD. Organometallics 23:4026–4033

    Article  CAS  Google Scholar 

  • Zhang J, Leitus G, Ben-David Y, Milstein D (2005) Facile conversion of alcohols into esters and dihydrogen catalyzed by new ruthenium complexes. J Am Chem Soc 127:10840–10841

    Article  CAS  Google Scholar 

  • Zhang J, Gandelman M, Shimon LJW, Milstein D (2007) Electron-rich, bulky PNN-type ruhthenium complexes: synthesis, characterization and catalysis of AAD. Dalton Trans 107–113

    Google Scholar 

  • Zhang J, Senthilkumar M, Ghosh SC, Hong SH (2010a) Synthesis of cyclic imides from simple diols. Angew Chem Int Ed 49:6391–6395

    Article  CAS  Google Scholar 

  • Zhang Y, Chen C, Ghosh SC, Li Y, Hong SH (2010b) Well-defined N-heterocyclic carbene based ruthenium catalysts for direct amide synthesis from alcohols and amines. Organometallics 29(6):1374–1378

    Article  CAS  Google Scholar 

  • Zhang J, Balaraman E, Leitus G, Milstein D (2011) Electron-rich PNP- and PNN-type ruthenium(II) hydrido borohydride pincer complexes. Synthesis, structure, and catalytic dehydrogenation of alcohols and hydrogenation of esters. Organometallics 30:5716–5724

    Article  CAS  Google Scholar 

  • Zhao J, Hartwig JF (2005) Acceptorless, neat, ruthenium-catalyzed dehydrogenative cyclization of diols to lactones. Organometallics 24:2441–2446

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nielsen, M. (2015). Hydrogen Production by Homogeneous Catalysis: Alcohol Acceptorless Dehydrogenation. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Hydrogen Production and Remediation of Carbon and Pollutants. Environmental Chemistry for a Sustainable World, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-19375-5_1

Download citation

Publish with us

Policies and ethics