Skip to main content

Overview of the Field

  • Chapter
  • First Online:
Nanosciences and Nanotechnology

Abstract

Based on a comprehensive understanding of reactions at the nanoscale, nanochemistry is the art of building up nanomaterials via the bottom–up approach, as opposed to the top–down approach followed in electronics. In the first part, we use the examples of nanodiamond, carbon nanotubes, and graphene to illustrate the diversity of properties that can be procured by nanochemistry from the same element, viz., carbon, then describe their applications to energy production and storage. In the second part, we discuss soft nanochemistry, which appeals to the methods of molecular and supramolecular synthesis. The molecular route is exemplified by the so-called click chemistry, while the supramolecular route, molecular recognition, and self-assembly are illustrated by the cyclodextrins and self-healing rubbers. There follows a description of methods of functionalisation, key steps in controlling the properties of nanoparticles and nanomaterials. The last part deals with synthesis routes for preparing metal nanoparticles and nanostructured materials such as organic–inorganic hybrid nanocomposites. Finally, we present the bio-inspired approach in which the nanochemist produces hybrid nanomaterials with hierarchical structure in a single step.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A \(\pi \)-conjugated polymer is one that is rich in double bonds and aromatic rings, which delocalise \(\pi \) electrons over the whole structure, thereby bestowing semiconductor properties on the material (see Fig. 5.13b).

References

  1. P. Delhaes, Science et technique des carbones: de l’énergie aux matériaux (Hermes et Lavoisier, Cachan, 2013)

    Google Scholar 

  2. A. Krueger, Carbon Materials and Nanotechnology (Wiley-VCH Verlag GmbH & Co., Weinheim, 2010)

    Book  Google Scholar 

  3. Special Issue: Les matériaux carbonés. L’Actualité Chimique 295296 (2006)

    Google Scholar 

  4. Website of the Groupe français d’étude des carbones. www.gfec.net/

  5. G.M. Jenkins, K. Kawamura, Structure of glassy carbon. Nature 231, 175–176 (1971)

    Article  ADS  Google Scholar 

  6. Carbon Black User’s Guide, Safety, Health, & Environmental Information. International Carbon Black Association. www.carbon-black.org/

  7. C. Bathias et al., Matériaux composites, Chap. 19, L’Usine Nouvelle, Mécanique et matériaux, 2nd edn. (Dunod, Paris, 2009)

    Google Scholar 

  8. www.dgcis.gouv.fr/files/files/archive and www.industrie.gouv.fr/colloque/nanomateriaux/francis-peters-michelin.pdf

  9. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318, 162–163 (1985)

    Article  ADS  Google Scholar 

  10. V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012)

    Article  ADS  Google Scholar 

  11. O.A. Shenderova, D.M. Gruen, Ultracristalline Diamond: Synthesis, Properties and Applications, Micro- and NanoTechnologies Series, 2nd edn. (Elsevier, Amsterdam, 2012)

    Google Scholar 

  12. E. Osawa, D. Ho, Nanodiamond and its application to drug delivery. J. Med. Allied Sci. 2, 31–40 (2012)

    Google Scholar 

  13. E.K. Chow, X.Q. Zhang, M. Chen, R. Lam, E. Robinson, H. Huang, D. Schaffer, E. Osawa, A. Goga, D. Ho, Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med. 3, 73ra21 (2011)

    Article  Google Scholar 

  14. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Google Scholar 

  15. S. Yellampalli, Carbon Nanotubes. Synthesis, Characterization, Applications (InTech, Open Book, 2011). doi:10.5772/978

    Google Scholar 

  16. D.M. Guldi, N. Martín, Carbon Nanotubes and Related Structures (Wiley, New York, 2010)

    Book  Google Scholar 

  17. M. Monthioux, Carbon Meta-Nanotubes: Synthesis, Properties and Applications (Wiley, New York, 2012)

    Google Scholar 

  18. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)

    Article  ADS  Google Scholar 

  19. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature (London) 363, 603–605 (1993)

    Article  ADS  Google Scholar 

  20. S. Shanmugam, A. Gedanken, Electrochemical properties of bamboo-shaped multiwalled carbon nanotubes generated by solid state pyrolysis. Electrochem. Commun. 8, 1099–1105 (2006)

    Article  Google Scholar 

  21. K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene. Nature 490, 192–200 (2012)

    Article  ADS  Google Scholar 

  22. J.H. Warner, F. Schaffel, M. Rummeli, A. Bachmatiuk, Graphene: Fundamentals and Emergent Applications (Elsevier, Amsterdam, 2013)

    Google Scholar 

  23. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  24. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006)

    Article  ADS  Google Scholar 

  25. R. Demadrille, Élaborer des architectures moléculaires conjuguées pour le photovoltaïque organique. Clés CEA 60, 26–28 (2011)

    Google Scholar 

  26. G.V. Dubacheva, C.K. Liang, D.M. Bassani, Functional monolayers from carbon nanostructures—fullerenes, carbon nanotubes, and graphene as novel materials for solar energy conversion. Coord. Chem. Rev. 256, 2628–2639 (2012)

    Article  Google Scholar 

  27. H. Marsh, F.R. Reinoso, Activated Carbon (Elsevier, Oxford, 2006)

    Google Scholar 

  28. P. Bernier, S. Lefrant, Le carbone dans tous ses états (Gordon and Breach Science Publishers, Amsterdam, 1997)

    Google Scholar 

  29. M. Inagaki, Pores in carbon materials importance of their control. New Carbon Mater. 24, 193–232 (2009)

    Article  Google Scholar 

  30. A. Walcarius, Electrocatalysis, sensors and biosensors in analytical chemistry based on ordered mesoporous and macroporous carbon-modified electrodes. Trends Anal. Chem. 38, 79–97 (2012)

    Article  Google Scholar 

  31. P.L. Taberna, P. Simon, Supercondensateurs carbone/carbone à haute densité d’énergie. Apport des carbones microporeux. Technique de l’Ingénieur (2011)

    Google Scholar 

  32. P. Simon, Supercondensateurs: principes et évolutions. Conférence du Collège de France, Chaire Développement durable, Environnement, Énergie et Société, (2010–2011). www.college-de-france.fr/media/jean-marie-tarascon/UPL19317_P_Simon_2F_vrier.pdf

  33. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006)

    Article  ADS  Google Scholar 

  34. G.A. Ozin, A.C. Arsenault, L. Cademartiri, Nanochemistry: A Chemical Approach to Nanomaterials, 2nd edn. (RSC Publishing, Cambridge, 2009)

    Google Scholar 

  35. S. Mischler, La chimie click pour la conception de nanoparticules d’or liquides-crystallines. Ph.D. thesis, Neuchâtel University (2012)

    Google Scholar 

  36. H.C. Kolb, M.G. Finn, K.B. Sharpless, Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. 40, 2004–2021 (2001)

    Article  Google Scholar 

  37. A.M. Isloor, B. Kalluraya, P. Shetty, Regioselective reaction: synthesis, characterization and pharmacological studies of some new Mannich bases derived from 1,2,4-triazoles. Eur. J. Med. Chem. 44, 3784–3787 (2009)

    Article  Google Scholar 

  38. J. Iehl, R. Pereira de Freitas, J.F. Nierengarten, Click chemistry with fullerene derivatives. Tetrahedron Lett. 49, 4063–4066 (2008)

    Article  Google Scholar 

  39. N. Moitra, P. Trens, L. Raehm, J.O. Durand, X. Cattoën, M. Wong, Chi Man: Facile route to functionalized mesoporous silica nanoparticles by click chemistry. J. Mater. Chem. 21, 13476–13482 (2011)

    Article  Google Scholar 

  40. J.M. Lehn, La chimie supramoléculaire: concepts et perspectives (De Boeck Supérieur, 1997)

    Google Scholar 

  41. J.M. Lehn, Chimie des interactions moléculaires: leçon inaugurale au Collège de France, 7 March 1980 (Collège de France, 1980)

    Google Scholar 

  42. J.W. Steed, J.L. Atwood, Supramolecular Chemistry, 2nd edn. (Wiley, Chichester, 2009)

    Book  Google Scholar 

  43. W. Hosseini, Introduction à la chimie supramoléculaire. MSc course 2011. http://lcco.u-strasbg.fr/wp-content/uploads/2011/09/Cours-Supramol-copie.pdf

  44. M. Mayor, PNR Matériaux fonctionnels supramoléculaires. Vision (Swiss magazine of science and innovation), special issue (2001)

    Google Scholar 

  45. E. Bilensoy, Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine (Wiley, Hoboken, 2011)

    Book  Google Scholar 

  46. P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, L. Leibler, Self-healing and thermo-reversible rubber from supramolecular assembly. Nature 451, 977–980 (2008)

    Article  ADS  Google Scholar 

  47. J.L. Halary, L. Avérous, M.É. Borredon, S. Bourbigot, B. Boutevin, C. Bunel, S. Caillol, S. Commereuc, S. Duquesne, L. Lecamp, L. Leibler, É. Pollet, C. Soulié-Ziakovic, F. Tournilhac, C. Vaca-Garcia, V. Verney, Matériaux polymères et développement durable. L’Actualité Chimique 338339 (2010)

    Google Scholar 

  48. A. Krueger, The structure and reactivity of nanoscale diamond. J. Mater. Chem. 18, 1485–1492 (2008)

    Article  ADS  Google Scholar 

  49. J.J. Gooding, F. Mearns, W. Yang, J. Liu, Self-assembled monolayers into the 21st century: recent advances and applications. Electroanalysis 15(2), 81–96 (2003)

    Article  Google Scholar 

  50. M. Delamar, R. Hitmi, J. Pinson, J.M. Saveant, Covalent modification of carbon surfaces by grafting of functionalized aryl radicals produced from electrochemical reduction of diazonium salts. J. Am. Chem. Soc. 114, 5883–5884 (1992)

    Article  Google Scholar 

  51. A. Adenier, E. Cabet-Deliry, A. Chaussé, S. Griveau, F. Mercier, J. Pinson, C. Vautrin-Ul, Grafting of nitrophenyl groups on carbon and metallic surfaces without electrochemical induction. Chem. Mater. 17, 491–501 (2005)

    Article  Google Scholar 

  52. J. Ru, B. Szeto, A. Bonifas, R.L. McCreery, Microfabrication and integration of diazonium-based aromatic molecular junctions. Appl. Mater. Interfaces 2, 3693–3701 (2010)

    Article  Google Scholar 

  53. B.P. Corgier, C.A. Marquette, L. Blum, Diazonium–protein adducts for graphite electrode microarrays modification: direct and addressed electrochemical immobilization. J. Am. Chem. Soc. 127, 18328–18332 (2005)

    Article  Google Scholar 

  54. S. Bouden, A. Chaussel, S. Dorbes, O. El Tall, N. Bellakhal, M. Dachraoui, C. Vautrin-Ul, Trace lead analysis based on carbon-screen-printed-electrodes modified via 4-carboxy-phenyl diazonium salt electroreduction. Talanta 106, 414–421 (2013)

    Article  Google Scholar 

  55. C. Altavilla, Inorganic Nanoparticles: Synthesis, Applications, and Perspectives (CRC Press, Boca Raton, 2011)

    Google Scholar 

  56. O. Pluchery, M. Carriere, Nanoparticules d’or. Dossier Nanomatériaux: élaboration, propriétés et applications. Techniques de l’ingénieur (2011)

    Google Scholar 

  57. A. Corma, H. Garcia, Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37, 2096–2126 (2008)

    Article  Google Scholar 

  58. J. Pauchet, A. Morin, S. Escribano, N. Guillet, L. Antoni, G. Gebel, La pile à combustible PEMFC: une solution très crédible. Clefs CEA 59, 51–59 (2010)

    Google Scholar 

  59. H. You, S. Yang, B. Ding, H. Yang, Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem. Soc. Rev. 42, 2880–2904 (2013)

    Article  Google Scholar 

  60. H.Y. Du, C.H. Wang, H.C. Hsu, S.T. Chang, S.C. Yen, L.C. Chen, B. Viswanathan, K.H. Chen, High performance of catalysts supported by directly grown PTFE-free micro-porous CNT layer in a proton exchange membrane fuel cell. J. Mater. Chem. 21, 2512–2516 (2011)

    Article  Google Scholar 

  61. S. Sun, G. Zhang, Y. Zhong, H. Liu, R. Li, X. Zhou, X. Sun, Ultrathin single crystal Pt nanowires grown on N-doped carbon nanotubes. Chem. Commun. 45, 7048–7050 (2009)

    Article  Google Scholar 

  62. K. Haupt, Molecular imprinting. Top. Curr. Chem. 325, 1–110 (2012)

    Article  Google Scholar 

  63. V. Dufaud, L. Bonneviot, Molecular imprinting, in Nanomaterials and Nanochemistry, ed. by M. Lahmani, C. Bréchignac, P. Houdy (Springer, Berlin, 2007), pp. 597–616

    Chapter  Google Scholar 

  64. D. Batra, K.J. Shea, Combinational methods in molecular imprinting. Curr. Opin. Chem. Biol. 7, 434–442 (2003)

    Article  Google Scholar 

  65. C. Sanchez, Chimie des matériaux hybrides. Leçon inaugurale au Collège de France (Collège de France, Fayard, 2012)

    Google Scholar 

  66. C. Sanchez, Matériaux hybrides multifonctionnels: du champ d’investigation pluridisciplinaire aux applications. Le nano-monde de la chimie. La lettre de l’Académie des sciences 23, 10–19 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Vautrin-Ul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vautrin-Ul, C. (2016). Overview of the Field. In: Lourtioz, JM., Lahmani, M., Dupas-Haeberlin, C., Hesto, P. (eds) Nanosciences and Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-19360-1_5

Download citation

Publish with us

Policies and ethics