Skip to main content

Overview of the Field

  • Chapter
  • First Online:
  • 1772 Accesses

Abstract

The nanometre is not by a long way the smallest length scale explored today by physicists, but it is at this scale that the properties of matter change radically with, among other things, the manifestation of quantum effects which can be exploited in electronics and photonics. The development of nanoscience and nano-technology has thus been driven forward by the quest to better understand the physical properties of matter on the nanoscale and thereby to miniaturise electronic and photonic components. The first parts of this chapter show how we can today produce nano-objects by the top–down approach, how we can visualise, manipulate, and assemble them, and how some of their astonishing properties can be illustrated by quantum dots, nanotubes, nanowires, and a material like graphene. The following parts deal with nanoelectronics and nanophotonics. We also discover the current limits on the miniaturisation of the key component in electronics, the MOS transistor. These limitations have inspired scientists to investigate a broad range of new components and circuits, like those proposed by the new field of spintronics. When we consider nanophotonics, we discover a field of research with the same breadth as nanoelectronics, illustrated by recent progress in the development of micro- and nanosources, the ideas of photonic crystals and metamaterials, and applications to photovoltaic conversion and optical interconnects. Finally, through the consideration of microsystems and nanobiotechnology, the last part of the chapter shows how research at the interfaces between nanophysics, chemistry, biology, and medicine will guarantee discovery, innovation, and significant industrial applications, some of which will be presented in subsequent chapters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Company founded by Robert Noyce and Gordon Moore.

  2. 2.

    If we produce a billion objects each with a 99.9999999 % efficiency, the total efficiency will be of the order of 35 %.

  3. 3.

    By 2020, sizes of around 10 nm are expected and wafers will have diameters of 450 mm.

  4. 4.

    This discovery was rewarded by the Nobel Prize for Chemistry in 1996, awarded to Harold Kroto, Robert Curl, and Richard Smalley.

  5. 5.

    Awarded to the physicists Andre Geim and Konstantin Novoselov, of Russian origin but working at the University of Manchester.

  6. 6.

    Ruska received the Nobel Prize for Physics in 1986.

  7. 7.

    These are the frequencies of the clocks in the central processing unit which determine the number of on–off cycles made by the transistors every second.

  8. 8.

    This is the volume for a channel with a surface area of \(30\times 30\) nm\(^2\) and a thickness of 20 nm.

  9. 9.

    Note that a hundred Google searches require as much energy as the operation of a low energy bulb during 1 h (30 W h).

  10. 10.

    In computing, a cache memory is one that temporarily records copies of data coming from other sources, such as DRAM random access memory, in order to reduce the time required by the processor to access this data (in read or write).

  11. 11.

    The existence of such currents is a consequence of the spin Hall effect, but a serious discussion would go beyond the scope of this book.

  12. 12.

    Coulomb blockade is a mechanism that can control the passage of charge carriers one by one. In a quantum dot, the electrostatic repulsion between electrons leads to an increase in the confinement energy with the number of electrons. This means that, each time another electron is confined within the dot, more energy must be supplied.

  13. 13.

    In a direct bandgap semiconductor, the process of electron–hole recombination can occur without supply of extra energy or momentum. In an indirect bandgap semiconductor, the process involves the energy and momentum associated with an elementary vibration of the crystal lattice called a phonon. In this case, the probability of a three-body process is clearly much lower.

  14. 14.

    FRET is short for Förster resonance energy transfer. Theodor Förster (1910–1974) was trying to understand energy transport in plant photosynthesis. He was the first to provide a theoretical explanation for non-radiative energy transfer between molecules and its dependence on the intermolecular distance.

  15. 15.

    Historically, of course, the field of microsystems, itself characterised by a length scale (the micron), came before nanoscience and nanophysics. It too is situated at the meeting point of many scientific disciplines, but in contrast to nanophysics, it falls more or less completely into the field of applied science, while nanophysics lies at the frontier between fundamental science and applied science.

  16. 16.

    In the Bohr model of the hydrogen atom, the Bohr radius which characterises the distance between the electron and the proton is about 53 picometers.

References

  1. G. Fève, A. Mahé, J.-M. Berroir, T. Kontos, B. Plaçais, D.C. Glattli, A. Cavanna, B. Etienne, Y. Jin, An on-demand coherent single-electron source. Science 316, 1169–1172 (2007)

    Google Scholar 

  2. F. Marquardt, S.M. Girvin, Optomechanics. Physics 2, 40 (2009)

    Article  Google Scholar 

  3. Le monde quantique, special issue of Pour la science, no. 68 (July-September 2010)

    Google Scholar 

  4. P.P. Naulleau, O.R. Wood, in Extreme Ultraviolet (EUV). Lithography III. Proceedings of SPIE, vol. 8322 (2012)

    Google Scholar 

  5. D. Winston, B.M. Cord, B. Ming, D.C. Bell, W.F. Di Natale, L. Stern, A.E. Vladar, M.T. Postek, M.K. Mondol, J.K.W. Yang, K.K. Berggren, Scanning-helium-ion-beam lithography with hydrogen silsesquioxane resist. J. Vac. Sci. Technol. B 27, 2702–2706 (2009)

    Article  Google Scholar 

  6. B. Schiedt, L. Auvray, L. Bacri, G. Oukhaled, A. Madouri, E. Bourhis, G. Patriarche, J. Pelta, R. Jede, J. Gierak, Direct FIB fabrication and integration of ‘single nanopore devices’ for the manipulation of macromolecules. Microelectron. Eng. 87, 1300–1303 (2010)

    Article  Google Scholar 

  7. A.M. Shevjakov, G.N. Kuznetsova, V.B. Aleskovskii, Chemistry of high temperature materials, in Proceedings of 2nd USSR Conference on High Temperature Chemistry of Oxides, 26–29 November 1965, Leningrad, USSR (Nauka, Leningrad, USSR, 1967), pp. 149–155 (in Russian)

    Google Scholar 

  8. T. Yatsui, K. Hirata, W. Nomura, Y. Tabata, M. Ohtsu, Realization of an ultra-flat silica surface with angstrom-scale average roughness using nonadiabatic optical near-field. Appl. Phys. B 93, 55–57 (2008)

    Article  ADS  Google Scholar 

  9. S.Y. Chou, P.R. Krauss, P.J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67, 3114–3116 (1995)

    Article  ADS  Google Scholar 

  10. T. Bailey, S. Johnson, D. Resnick, S. Sreenivasan, J. Ekerdt, C. Willson, Step and flash imprint lithography: an efficient nanoscale printing technology. J. Photopolym. Sci. Tech. 15, 481–487 (2002)

    Article  Google Scholar 

  11. A. Cattoni, E. Cambril, D. Decanini, G. Faini, A. Haghiri-Gosnet, Soft UV-NIL at 20 nm scale using flexible bi-layer stamp casted on HSQ master mold. Microelectron. Eng. 87, 1015–1018 (2010)

    Article  Google Scholar 

  12. S.H. Ahn, L.J. Guo, Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting. ACS Nano 3(8), 2304–2310 (2009)

    Article  Google Scholar 

  13. T.J. Karle, Y. Halioua, F. Raineri, P. Monnier, R. Braive, L. Le Gratiet, G. Beaudoin, I. Sagnes, G. Roelkens, F. van Laere, D. Van Thourhout, R. Raj, Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal oxide semiconductor fabricated silicon-on-insulator wire waveguides. J. Appl. Phys. 107, 063103 (2010)

    Article  ADS  Google Scholar 

  14. M. Thiel, M.S. Rill, G. von Freymann, M. Wegener, Three-dimensional bi-chiral photonic crystals. Adv. Mater. 21, 4680–4682 (2009)

    Article  Google Scholar 

  15. A.P. Alivisatos, W. Gu, C. Larabell, Quantum dots as cellular probes. Annu. Rev. Biomed. Eng. 7, 55–76 (2005)

    Article  Google Scholar 

  16. I. Stranski, L. Krastanov, Sitzungsberichte d. Akad. d. Wissenschaften in Wien, Chap. IIb, vol. 146 (1937), p. 797

    Google Scholar 

  17. R. Rosales, K. Merghem, A. Martinez, A. Akrout, J.-P. Tourrenc, A. Accard, F. Lelarge, A. Ramdane, InAs/InP quantum-dot passively mode-locked lasers for \(1.55~\upmu \)m applications. IEEE J. Sel. Top. Quantum 1 (2011)

    Google Scholar 

  18. Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002)

    Article  ADS  Google Scholar 

  19. B. Baguenard, M. Pellarin, J. Lerme, J.-L. Vialle, M. Broyer, Competition between atomic shell and electronic shell structures in aluminum clusters. J. Chem. Phys. 100, 754 (1994)

    Article  ADS  Google Scholar 

  20. S. Iijima, Helical microtubules of graphitic carbon. Nature (London) 354, 56–58 (1991)

    Article  Google Scholar 

  21. J.-C. Harmand, L. Liu, G. Patriarche, L. Largeau, M. Tchernytcheva, N. Akopian, U. Perinetti, V. Zwiller, Potential of semiconductor nanowires for single photon sources. Quantum Sensing and Nanophotonic Devices VI. Book Series: Proceedings of SPIE, vol. 7222, article 722219 (2009)

    Google Scholar 

  22. J.I. Hahm, C.M. Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4, 51–54 (2004)

    Article  ADS  Google Scholar 

  23. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  ADS  Google Scholar 

  24. M. Kociak, A.Y. Kasumov, S. Guéron, B. Reulet, I.-I. Khodos, Y.-B. Gorbatov, V.-T. Volkov, L. Vaccarini, H. Bouchiat, Superconductivity in ropes of single-walled carbon nanotubes. Phys. Rev. Lett. 86, 2416 (2001)

    Article  ADS  Google Scholar 

  25. E. Gaufrès, N. Izard, L. Vivien, S. Kazaoui, D. Marris-Morini, E. Cassan, Enhancement of semiconducting single-wall carbon-nanotube photoluminescence. Opt. Lett. 34, 3845–3847 (2009)

    Article  ADS  Google Scholar 

  26. K. Falk, F. Sedlmeier, L. Joly, R.R. Netz, L. Bocquet, Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10, 4067–4073 (2010)

    Article  ADS  Google Scholar 

  27. P. Legagneux et al., Microwave amplifiers, in Carbon Nanotube and Related Field Emitters: Fundamentals and Applications, ed. by Y. Saito (Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, 2010)

    Google Scholar 

  28. M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D.K. Maude, A.-L. Barra, M. Sprinkle, C. Berger, W.A. de Heer, M. Potemski, Approaching the Dirac point in high-mobility multilayer epitaxial graphene. Phys. Rev. Lett. 101, 267601 (2008)

    Article  ADS  Google Scholar 

  29. S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W. Bao, F. Miao, C.N. Lau, Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008)

    Article  ADS  Google Scholar 

  30. H. Raether, Surface Plasmons. Springer Tracts in Modern Physics, vol. 111 (Springer, Berlin, 1988)

    Google Scholar 

  31. J. Nelayah, M. Kociak, O. Stéphan, F.J. García de Abajo, M. Tencé, L. Henrard, D. Taverna, I. Pastoriza-Santos, L.M. Liz-Marzán, C. Colliex, Mapping surface plasmons on a single metallic nanoparticle. Nat. Phys. 3, 348–353 (2007)

    Article  Google Scholar 

  32. L.F. Zagonel, S. Mazzucco, M. Tencé, K. March, R. Bernard, B. Laslier, G. Jacopin, M. Tchernycheva, L. Rigutti, F.H. Julien, R. Songmuang, M. Kociak, Nanometer scale spectral imaging of quantum emitters in nanowires and its correlation to their atomically resolved structure. Nano Lett. 11, 568–573 (2011)

    Article  ADS  Google Scholar 

  33. H. Yang, A.J. Mayne, M. Boucherit, G. Comtet, G. Dujardin, Y. Kuk, Quantum interference channeling at graphene edges. Nano Lett. 10, 943–947 (2010)

    Article  ADS  Google Scholar 

  34. M.W. Browne, Two researchers spell IBM atom par atom. The New York Times (5 April 1990)

    Google Scholar 

  35. M. Lastapis, M. Martin, D. Riedel, L. Hellner, G. Comtet, G. Dujardin, Picometer-scale electronic control of molecular dynamics inside a single molecule. Science 308, 1000–1003 (2005)

    Article  ADS  Google Scholar 

  36. Y.-C. Yeh, C.-L. Lin, B.-J. Chen, Y.-W. Tseng, J.D. Russel, Application of atomic force probing on 90 nm DRAM cell failure analysis. Proceedings of the 13th International Symposium on the Physical and Failure Analysis of Integrated Circuits (2006) pp. 340–343

    Google Scholar 

  37. E.H. Synge, A suggested method for extending the microscopic resolution into the ultramicroscopic region. Philos. Mag. 6, 356 (1928)

    Article  Google Scholar 

  38. V.S. Volkov, S.I. Bozhevolnyi, E. Devaux, T.W. Ebbesen, Compact gradual bends for channel plasmon polaritons. Opt. Express 14, 4494–4503 (2006)

    Article  ADS  Google Scholar 

  39. E. Devaux, T.W. Ebbesen, J.-C. Weeber, A. Dereux, Launching and decoupling surface plasmons via micro-gratings. Appl. Phys. Lett. 83, 4936–4938 (2003)

    Article  ADS  Google Scholar 

  40. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)

    Article  ADS  Google Scholar 

  41. J. von Neumann, The principles of large-scale computing machines. Reprinted in Ann. Hist. Comput. 3, 263–273 (1946)

    Article  Google Scholar 

  42. M. Pickavet, W. Vereecken, S. Demeyer, P. Audenaert, B. Vermeulen, C. Develder, D. Colle, B. Dhoedt, P. Demeester, Worldwide energy needs for ICT: the rise of power-aware networking. IEEE ANTS 2008 Conference, Bombay (India), 15–17 December 2008

    Google Scholar 

  43. Y.M. Lee, J. Hayakawa, S. Ikeda, F. Matsukura, H. Ohno, Effect of electrode composition on the tunnel magnetoresistance of pseudo-spin-valve magnetic tunnel junction with a MgO tunnel barrier. Appl. Phys. Lett. 90, 212507 (2007)

    Article  ADS  Google Scholar 

  44. A. Chanthbouala, R. Matsumoto, J. Grollier, V. Cros, A. Anane, A. Fert, A.V. Khvalkovskiy, K.A. Zvezdin, K. Nishimura, Y. Nagamine, H. Maehara, K. Tsunekawa, A. Fukushima, S. Yuasa, Vertical-current-induced domain-wall motion in MgO-based magnetic tunnel junctions with low current densities. Nat. Phys. 7, 626–630 (2011)

    Article  Google Scholar 

  45. Y. Gang, W.S. Zhao, J.-O. Klein, C. Chappert, P. Mazoyer, A high-reliability, low-power magnetic full adder. IEEE Trans. Mag. 47, 4611–4616 (2011)

    Article  ADS  Google Scholar 

  46. T. Ernst, L. Duraffourg, C. Dupre, E. Bernard, P. Andreucci, S. Becu, E. Ollier, A. Hubert, C. Halte, J. Buckley, O. Thomas, G. Delapierre, S. Deleonibus, B. de Salvo, P. Robert, O. Faynot, Novel Si-based nanowire devices: will they serve ultimate MOSFET scaling or ultimate hybrid integration?, in IEEE International Electron Devices Meeting (IEDM) (2008), pp. 1–4

    Google Scholar 

  47. S.J. Shin, C.S. Jung, B.J. Park, T.K. Yoon, J.J. Lee, S.J. Kim, J.B. Choi, Y. Takahashi, D.G. Hasko, Si-based ultrasmall multiswitching single-electron transistor operating at room-temperature. Appl. Phys. Lett. 97, 103101 (2010)

    Article  ADS  Google Scholar 

  48. L. Nougaret, H. Happy, G. Dambrine, V. Derycke, J.-P. Bourgoin, A.A. Green, M.C. Hersam, 80 GHz field-effect transistors produced using high purity semiconducting single-walled carbon nanotubes. Appl. Phys. Lett. 94, 243505 (2009)

    Article  ADS  Google Scholar 

  49. C. Sire, F. Ardiaca, S. Lepilliet, J.W.T. Seo, M.C. Hersam, G. Dambrine, H. Happy, V. Derycke, Flexible gigahertz transistors derived from solution-based single-layer graphene. Nano Lett. 12, 1184–1188 (2012)

    Article  ADS  Google Scholar 

  50. M. Urdampilleta, S. Klyatskaya, J.-P. Cleuziou, M. Ruben, W. Wernsdorfer, Supramolecular spin valves. Nat. Mater. 10, 502–506 (2011)

    Article  ADS  Google Scholar 

  51. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)

    Article  ADS  Google Scholar 

  52. W.S. Zhao, G. Agnus, V. Derycke, A. Filoramo, C. Gamrat, J.-P. Bourgoin, Nanotube devices based crossbar architecture: toward neuromorphic computing. Nanotechnology 21, 175202 (2010)

    Article  ADS  Google Scholar 

  53. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals (Princeton, New York, 1995)

    Google Scholar 

  54. J.-M. Lourtioz, H. Bénisty, V. Berger, J.-M. Gérard, D. Maystre, A. Chelnokov, D. Pagnoux, Photonic Crystals. Towards Nanoscale Photonic Devices, 2nd edn. (Springer, Berlin, 2008)

    Google Scholar 

  55. S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaître, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, I. Abram, Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity. Appl. Phys. Lett. 87, 163107 (2005)

    Article  ADS  Google Scholar 

  56. A. Dousse, J. Suffczynski, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, P. Senellart, Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010)

    Article  ADS  Google Scholar 

  57. J.-C. Johnson, H.-J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang, R.J. Saykally, Single gallium nitride nanowire lasers. Nat. Mater. 1, 106–110 (2002)

    Article  ADS  Google Scholar 

  58. B. Ellis, M.A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E.E. Haller, J. Vuckovic, Ultralow threshold electrically pumped quantum dot photonic-crystal nanocavity laser. Nat. Photonics 5, 297–300 (2011)

    Article  ADS  Google Scholar 

  59. S. Matsuo, T. Sato, K. Takeda, A. Shinaya, K. Nosaki, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuk, Ultralow operating energy electrically driven photonic crystal laser. IEEE J. Sel. Top. Quantum Electron. 19, 4900311 (2013)

    Article  Google Scholar 

  60. T. Asano, B.S. Song, S. Noda, Analysis of the experimental Q factors (\(>1\) million) of photonic crystal nanocavities. Opt. Express 14, 1996–2002 (2006)

    Article  ADS  Google Scholar 

  61. C. Dupas, P. Houdy, M. Lahmani (eds.), Nanoscience (Nanotechnologies and Nanophysics (Springer, Berlin, 2007)

    Google Scholar 

  62. S.J. McNab, N. Moll, Y.A. Vlasov, Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides. Opt. Express 11, 2927–2939 (2003)

    Article  ADS  Google Scholar 

  63. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–380 (2008)

    Article  ADS  Google Scholar 

  64. B. Kanté, A. de Lustrac, J.-M. Lourtioz, S. Burokur, Infrared cloaking based on the electric response of split ring resonators. Opt. Express 16, 9191–9198 (2008)

    Article  ADS  Google Scholar 

  65. J. Valentine, J. Li, T. Zentgraf, G. Bartal, X. Zhang, An optical cloak made of dielectrics. Nat. Mater. 8, 568–571 (2009)

    Article  ADS  Google Scholar 

  66. R.T. Hill et al., Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light. Nano Lett. 10, 4150–4154 (2010)

    Article  ADS  Google Scholar 

  67. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    Article  ADS  Google Scholar 

  68. Y. Chassagneux, R. Colombelli, W. Maineult, S. Barbieri, H.E. Beere, D.A. Ritchie, S.P. Khanna, E.H. Linfield, A.G. Davies, Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions. Nature 457, 174–178 (2009)

    Article  ADS  Google Scholar 

  69. P.E. Allain, A. Bosseboeuf, F. Parrain, S. Maaroufi, P. Coste, A. Walther, Large range MEMS motion detection using integrated piezo-resistive silicon nanowire, in Twenty-Fifth IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Conference Digest (2012), pp. 1320–1323

    Google Scholar 

  70. B. Hötzer, I.L. Medintz, N. Hildebrandt, Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications. Small 8, 2297–2326 (2012)

    Article  Google Scholar 

  71. W.R. Algar, D. Wegner, A.L. Huston, J.B. Blanco-Canosa, M.H. Stewart, A. Armstrong, P.E. Dawson, N. Hildebrandt, I.L. Medintz, Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing. J. Am. Chem. Soc. 134, 1876–1891 (2012)

    Article  Google Scholar 

  72. G. Aubry, Q. Kou, J. Soto-Velasco, C. Wang, S. Méance, J.-J. He, A.-M. Haghiri-Gosnet, A multicolor microfluidic droplet dye laser with single mode emission. Appl. Phys. 98, 111111 (2011)

    ADS  Google Scholar 

  73. R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Microscopic artificial swimmers. Nat. Lett. 437, 862–865 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Lourtioz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lourtioz, JM. (2016). Overview of the Field. In: Lourtioz, JM., Lahmani, M., Dupas-Haeberlin, C., Hesto, P. (eds) Nanosciences and Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-19360-1_2

Download citation

Publish with us

Policies and ethics