Skip to main content

Proteins, Enzymes and Biological Catalysis

  • Chapter
  • First Online:
Large-Scale Quantum-Mechanical Enzymology

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In their simplest form, proteins essentially comprise unbranched polymer chains formed as a result of chemical bonding that takes place between the amino acid building blocks.

In biology, proteins are uniquely important... the most significant thing about proteins is that they can do almost anything. But their main function is to act as enzymes

—Francis Crick, Society for Experimental Biology Symposium 1957

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Sanger, H. Tuppy, Biochem. J. 49, 463 (1951)

    Google Scholar 

  2. B. Alberts, D. Bray, K. Hopkin, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Essential Cell Biology, 3rd edn. (Garland Science, 2010)

    Google Scholar 

  3. Structural information (determined by microwave spectroscopy) from CRC Handbook of Chemistry and Physics, 88th edn (CRC Press, 2007)

    Google Scholar 

  4. D.J. Wales, Energy Landscapes (Cambridge University Press, Cambridge, 2003)

    Google Scholar 

  5. W.T. Astbury, Trans. Faraday Soc. 29, 193 (1933)

    Article  Google Scholar 

  6. L. Pauling, R.B. Corey, H.R. Branson, Proc. Natl. Acad. Sci. USA 37, 205 (1951)

    Article  ADS  Google Scholar 

  7. A. Bairoch, Nucleic Acids Res. 28, 304 (2000)

    Article  Google Scholar 

  8. E. Fischer, Ber. Chem. Ges. Berl. 27, 2985 (1894)

    Article  Google Scholar 

  9. H. Eyring, M. Polanyi, Z. Phys. Chem. Abt. B 12, 279 (1931)

    Google Scholar 

  10. M.G. Evans, M. Polanyi, Trans. Faraday Soc. 31, 875 (1935)

    Article  Google Scholar 

  11. L. Pauling, Am. Sci. 36, 50 (1948)

    Google Scholar 

  12. M.M. Mader, P.A. Bartlett, Chem. Rev. 97, 1281 (1997)

    Article  Google Scholar 

  13. R.A. Copeland, J.P. Davis, G.A. Cain, W.J. Pitts, R.L. Magolda, Biochem. 35, 1270 (1996)

    Article  Google Scholar 

  14. V.L. Schramm, Annu. Rev. Biochem. 80, 703 (2011)

    Article  Google Scholar 

  15. P. Kollman, B. Kuhn, M. Peräkylä, J. Phys. Chem. B 106, 1537 (2002)

    Article  Google Scholar 

  16. G. Hou, G. Hou, Q. Cui, J. Am. Chem. Soc. 134, 229 (2011)

    Article  Google Scholar 

  17. A. Fersht, Enzyme Structure and Mechanism (W. H. Freeman and Company, New York, 1985)

    Google Scholar 

  18. A. Radzicka, R. Wolfenden, Science 267, 90 (1995)

    Article  ADS  Google Scholar 

  19. N.J. Mulder, P. Kersey, M. Pruess, R. Apweiler, Mol. Biotechnol. 38, 165 (2008)

    Article  Google Scholar 

  20. J.P. Overington, B. Al-Lazikani, A.L. Hopkins, Nat. Rev. Drug Discov. 5, 993 (2006)

    Article  Google Scholar 

  21. A.L. Hopkins, C.R. Groom, Nature Rev. Drug Discov. 1, 727 (2002)

    Article  Google Scholar 

  22. A.J. Mulholland, Drug Discov. Today 10, 1393 (2005)

    Article  Google Scholar 

  23. M. Pirmohamed, B.K. Park, Toxicology 192, 23 (2003)

    Article  Google Scholar 

  24. L. Ridder, A.J. Mulholland, Curr. Top. Med. Chem. 3, 1241 (2003)

    Google Scholar 

  25. M. Dantus, R.M. Bowman, J.S. Baskin, A.H. Zewail, Chem. Phys. Lett. 159, 402 (1989)

    Article  ADS  Google Scholar 

  26. S. Pedersen, L. Bañares, A.H. Zewail, J. Chem. Phys. 97, 8801 (1992)

    Article  ADS  Google Scholar 

  27. J.C. Polanyi, A.H. Zewail, Acc. Chem. Res. 28, 1992 (1995)

    Article  Google Scholar 

  28. A. Warshel, M. Levitt, J. Mol. Biol. 103, 227 (1976)

    Article  Google Scholar 

  29. S. Scheiner, W.N. Lipscomb, Proc. Natl. Acad. Sci. USA 73, 432 (1976)

    Article  ADS  Google Scholar 

  30. M.A. Cunningham, P.A. Bash, Biochimie 79, 687 (1997)

    Article  Google Scholar 

  31. T.C. Bruice, K. Kahn, Curr. Opin. Chem. Biol. 4, 540 (2000)

    Article  Google Scholar 

  32. R. Lonsdale, J.N. Harvey, J. Adrian, Mulholland. Chem. Soc. Rev. 41, 3025 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg Lever .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lever, G. (2015). Proteins, Enzymes and Biological Catalysis. In: Large-Scale Quantum-Mechanical Enzymology. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-19351-9_2

Download citation

Publish with us

Policies and ethics