Advertisement

From Spin Glasses to Branching Brownian Motion—and Back?

  • Anton BovierEmail author
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2144)

Abstract

I review recent work on the construction of the extremal process of branching Brownian motion. I place this in the context of spin glass theory and in particular the Generalised Random Energy models of Derrida and Gardner. The main emphasis is on a review of the construction of the extremal process of branching Brownian motion, done in collaboration with Louis-Pierre Arguin and Nicola Kistler (Commun Pure Appl Math 64(12):1647–1676, 2011; Ann Appl Probab 22(4):1693–1711, 2012; Probab Theory Relat Fields 157:535–574, 2013). I also present some more recent results on the variable speed Brownian motion, obtained with Lisa Hartung (Electron J Probab 19(18):1–28, 2014; Lat Am J Probab Math Stat 12:261–291, 2015).

Keywords

Brownian Motion Point Process Gaussian Process Gibbs Measure Brownian Bridge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

I am deeply grateful to my collaborators on the matters of these lectures, Louis-Pierre Arguin, Nicola Kistler, Irina Kurkova, and, most recently, Lisa Hartung. They did the bulk of the work, and without them none this would have been achieved. I also thank Jiří Černý, Lisa Hartung, and an anonymous referee for pointing out various mistakes and suggesting improvement. I thank Marek Biskup, Jiří Černý, and Roman Kotecký for organising the excellent school in Prague and for the opportunity to present these lectures there.

This work is partially supported through the German Research Foundation in the Collaborative Research Center 1060 “The Mathematics of Emergent Effects”, the Priority Programme 1590 “Probabilistic Structures in Evolution”, the Hausdorff Center for Mathematics (HCM), and the Cluster of Excellence “ImmunoSensation” at Bonn University.

References

  1. 1.
    E. Aïdékon, Convergence in law of the minimum of a branching random walk. Ann. Probab. 41, 1362–1426 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    E. Aïdékon, J. Berestycki, E. Brunet, Z. Shi, Branching Brownian motion seen from its tip. Probab. Theory Relat. Fields 157, 405–451 (2013)CrossRefzbMATHGoogle Scholar
  3. 3.
    L.-P. Arguin, A. Bovier, N. Kistler, Genealogy of extremal particles of branching Brownian motion. Commun. Pure Appl. Math. 64(12), 1647–1676 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    L.-P. Arguin, A. Bovier, N. Kistler, Poissonian statistics in the extremal process of branching Brownian motion. Ann. Appl. Probab. 22(4), 1693–1711 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    L.-P. Arguin, A. Bovier, N. Kistler, An ergodic theorem for the frontier of branching Brownian motion. Electron. J. Probab. 18(53), 25 (2013)Google Scholar
  6. 6.
    L.-P. Arguin, A. Bovier, N. Kistler, The extremal process of branching Brownian motion. Probab. Theory Relat. Fields 157, 535–574 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    L.-P. Arguin, A. Bovier, N. Kistler, An ergodic theorem for the extremal process of branching Brownian motion. Ann. Inst. Henri Poincaré Probab. Stat. 51, 557–569 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    K.B. Athreya, P.E. Ney, Branching Processes. Die Grundlehren der mathematischen Wissenschaften, Band 196 (Springer, New York, 1972)Google Scholar
  9. 9.
    G. Ben Arous, A. Kuptsov, REM universality for random Hamiltonians, in Spin Glasses: Statics and Dynamics. Progress in Probability, vol. 62 (Birkhäuser, Basel, 2009), pp. 45–84Google Scholar
  10. 10.
    G. Ben Arous, V. Gayrard, A. Kuptsov, A new REM conjecture, in In and Out of Equilibrium. 2. Progress in Probability, vol. 60 (Birkhäuser, Basel, 2008), pp. 59–96Google Scholar
  11. 11.
    M. Biskup, O. Louidor, Extreme local extrema of two-dimensional discrete Gaussian free field. ArXiv e-prints (June 2013)Google Scholar
  12. 12.
    A. Bovier, Statistical Mechanics of Disordered Systems. Cambridge Series in Statistical and Probabilistic Mathematics (Cambridge University Press, Cambridge, 2006)Google Scholar
  13. 13.
    A. Bovier, L. Hartung, The extremal process of two-speed branching Brownian motion. Electron. J. Probab. 19(18), 1–28 (2014)MathSciNetGoogle Scholar
  14. 14.
    A. Bovier, L. Hartung, Variable speed branching Brownian motion 1. Extremal processes in the weak correlation regime. ALEA, Lat. Am. J. Probab. Math. Stat. 12, 261–291 (2015)Google Scholar
  15. 15.
    A. Bovier, I. Kurkova, Derrida’s generalised random energy models. I. Models with finitely many hierarchies. Ann. Inst. Henri Poincaré Probab. Stat. 40(4), 439–480 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A. Bovier, I. Kurkova, Derrida’s generalized random energy models. II. Models with continuous hierarchies. Ann. Inst. Henri Poincaré Probab. Stat. 40(4), 481–495 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    A. Bovier, I. Kurkova, M. Löwe, Fluctuations of the free energy in the REM and the p-spin SK models. Ann. Probab. 30(2), 605–651 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    M.D. Bramson, Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31(5), 531–581 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    M. Bramson, Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Am. Math. Soc. 44(285), iv+190 (1983)Google Scholar
  20. 20.
    M. Bramson, O. Zeitouni, Tightness of the recentered maximum of the two-dimensional discrete Gaussian free field. Commun. Pure Appl. Math. 65(1), 1–20 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    M. Bramson, J. Ding, O. Zeitouni, Convergence in law of the maximum of the two-dimensional discrete Gaussian free field (Jan 2013). http://arXiv.org/abs/1301.6669
  22. 22.
    B. Chauvin, A. Rouault, KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees. Probab. Theory Relat. Fields 80(2), 299–314 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    B. Chauvin, A. Rouault, Supercritical branching Brownian motion and K-P-P equation in the critical speed-area. Math. Nachr. 149, 41–59 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    D.J. Daley, D. Vere-Jones, An Introduction to the Theory of Point Processes. Springer Series in Statistics (Springer, New York, 1988)Google Scholar
  25. 25.
    B. Derrida, H. Spohn, Polymers on disordered trees, spin glasses, and traveling waves. J. Stat. Phys. 51(5–6), 817–840 (1988). New directions in statistical mechanics (Santa Barbara, CA, 1987)Google Scholar
  26. 26.
    J. Ding, Exponential and double exponential tails for maximum of two-dimensional discrete gaussian free field. Probab. Theory Relat. Fields 157, 285–299 (2013)CrossRefzbMATHGoogle Scholar
  27. 27.
    M. Fang, O. Zeitouni, Branching random walks in time inhomogeneous environments. Electron. J. Probab. 17(67), 18 (2012)Google Scholar
  28. 28.
    M. Fang, O. Zeitouni, Slowdown for time inhomogeneous branching Brownian motion. J. Stat. Phys. 149(1), 1–9 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    R. Fisher, The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937)CrossRefGoogle Scholar
  30. 30.
    E. Gardner, B. Derrida, Magnetic properties and function q(x) of the generalised random energy model. J. Phys. C 19, 5783–5798 (1986)CrossRefGoogle Scholar
  31. 31.
    E. Gardner, B. Derrida, Solution of the generalised random energy model. J. Phys. C 19, 2253–2274 (1986)CrossRefGoogle Scholar
  32. 32.
    E. Gardner, B. Derrida, The probability distribution of the partition function of the random energy model. J. Phys. A 22(12), 1975–1981 (1989)MathSciNetCrossRefGoogle Scholar
  33. 33.
    J.-B. Gouéré, Branching Brownian motion seen from its left-most particle. ArXiv e-prints (May 2013)Google Scholar
  34. 34.
    N. Ikeda, M. Nagasawa, S. Watanabe, Markov branching processes I. J. Math. Kyoto Univ. 8, 233–278 (1968)MathSciNetzbMATHGoogle Scholar
  35. 35.
    N. Ikeda, M. Nagasawa, S. Watanabe, Markov branching processes II. J. Math. Kyoto Univ. 8, 365–410 (1968)MathSciNetzbMATHGoogle Scholar
  36. 36.
    N. Ikeda, M. Nagasawa, S. Watanabe, Markov branching processes III. J. Math. Kyoto Univ. 9, 95–160 (1969)MathSciNetzbMATHGoogle Scholar
  37. 37.
    O. Kallenberg, Random Measures (Akademie, Berlin, 1983)zbMATHGoogle Scholar
  38. 38.
    N. Kistler, Derrida’s random energy models from spin glasses to the extremes of correlated random fields, in Correlated Random Systems: Five Different Methods, V. Gayrard, N. Kistler, editors. Lecture Notes in Mathematics, vol. 2143 (Springer, Berlin, 2015), pp. 71–120Google Scholar
  39. 39.
    A. Kolmogorov, I. Petrovsky, N. Piscounov, Etude de l’ équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Moscou Universitet Bull. Math. 1, 1–25 (1937)Google Scholar
  40. 40.
    S.P. Lalley, T. Sellke, A conditional limit theorem for the frontier of a branching Brownian motion. Ann. Probab. 15(3), 1052–1061 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    M. Leadbetter, G. Lindgren, H. Rootzén, Extremes and Related Properties of Random Sequences and Processes. Springer Series in Statistics (Springer, New York, 1983)Google Scholar
  42. 42.
    P. Maillard, O. Zeitouni, Slowdown in branching Brownian motion with inhomogeneous variance. ArXiv e-prints (July 2013)Google Scholar
  43. 43.
    B. Mallein, Maximal displacement of a branching random walk in time-inhomogeneous environment. ArXiv e-prints (July 2013)Google Scholar
  44. 44.
    H.P. McKean, Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov. Commun. Pure Appl. Math. 28(3), 323–331 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    C. Newman, D. Stein, Spin Glasses and Complexity (Princeton University Press, Princeton, 2013)zbMATHGoogle Scholar
  46. 46.
    J. Nolen, J.-M. Roquejoffre, L. Ryzhik, Power-like delay in time inhomogeneous fisher-kpp equations. Commun. Partial Differ. Equ. 40, 475–505 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    D. Panchenko, The Sherrington-Kirkpatrick Model (Springer, New York, 2013)CrossRefzbMATHGoogle Scholar
  48. 48.
    S. Resnick, Extreme Values, Regular Variation, and Point Processes. Applied Probability. A Series of the Applied Probability Trust, vol. 4 (Springer, New York, 1987)Google Scholar
  49. 49.
    M.I. Roberts, A simple path to asymptotics for the frontier of a branching Brownian motion. Ann. Probab. 41(5), 3518–3541 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    M. Talagrand, Spin Glasses: A Challenge for Mathematicians. Ergebnisse der Mathematik und ihrer Grenzgebiete. (3) [Results in Mathematics and Related Areas (3)], vol. 46 (Springer, Berlin, 2003)Google Scholar
  51. 51.
    O. Zeitouni, Branching random walks and Gaussian free fields. Lecture notes (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Institut für Angewandte MathematikRheinische Friedrich-Wilhelms-Universität BonnBonnGermany

Personalised recommendations