Skip to main content

Using Gamma Regression for Photometric Redshifts of Survey Galaxies

  • Conference paper
The Universe of Digital Sky Surveys

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 42))

Abstract

Machine learning techniques offer a plethora of opportunities in tackling big data within the astronomical community. We present the set of Generalized Linear Models as a fast alternative for determining photometric redshifts of galaxies, a set of tools not commonly applied within astronomy, despite being widely used in other professions. With this technique, we achieve catastrophic outlier rates of the order of \(\sim 1\%\), that can be achieved in a matter of seconds on large datasets of size \(\sim 1,000,000\). To make these techniques easily accessible to the astronomical community, we developed a set of libraries and tools that are publicly available.

for the COIN collaboration

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.lsst.org/lsst

  2. 2.

    http://sci.esa.int/euclid

  3. 3.

    http://wfirst.gsfc.nasa.gov

  4. 4.

    https://asaip.psu.edu/organizations/iaa/iaa-working-group-of-cosmostatistics

  5. 5.

    https://github.com/COINtoolbox

  6. 6.

    https://asaip.psu.edu/organizations/iaa/iaa-working-group-of-cosmostatistics

References

  1. Brown, D., Rothery, P., et al.: Models in Biology: Mathematics, Statistics and Computing. John Wiley, New York (1993)

    MATH  Google Scholar 

  2. Candès, E.J., Li, X., Yi Ma, Wright J.: Robust principal component analysis? J. ACM 58(3), 11:1–11:37 (2011). ISSN 0004-5411. doi: 10.1145/1970392.1970395. http://doi.acm.org/10.1145/1970392.1970395

    Google Scholar 

  3. Carrasco Kind, M., Brunner, R.J.: Exhausting the information: novel Bayesian combination of photometric redshift PDFs. MNRAS 442, 3380–3399 (2014). doi: 10.1093/mnras/stu1098

    Article  ADS  Google Scholar 

  4. de Souza, R.S., Maio, U., Biffi, V., Ciardi, B.: Robust PCA and MIC statistics of baryons in early minihaloes. MNRAS 440, 240–248 (2014). doi: 10.1093/mnras/stu274

    Article  ADS  Google Scholar 

  5. Elliott, J., de Souza, R.S., Krone-Martins, A., Cameron, E., Ishida, E.E.O., Hilbe, J.: The overlooked potential of generalized linear models in astronomy-II: gamma regression and photometric redshifts. Astron. Comput. 10, 61–72 (2015). doi: 10.1016/j.ascom.2015.01.002

    Article  ADS  Google Scholar 

  6. Green, J., Schechter, P., Baltay, C., Bean, R., Bennett, D., Brown, R., Conselice, C., Donahue, M., et al.: Wide-Field InfraRed Survey Telescope (WFIRST) Final Report (2012). arxiv:1208.4012

    Google Scholar 

  7. Hildebrandt, H., Arnouts, S., Capak, P., Moustakas, L.A., Wolf, C., Abdalla, F.B, Assef, R.J., Banerji, M., et. al.: PHAT: PHoto-z accuracy testing. A&A 523, A31 (2010). doi: 10.1051/0004-6361/201014885

    Google Scholar 

  8. Lindsey, J.K.: A review of some extensions to generalized linear models. Stat. Med. 18(17–18), 2223–2236 (1999). ISSN 0277-6715. http://view.ncbi.nlm.nih.gov/pubmed/10474135

    Google Scholar 

  9. LSST Science Collaboration, Abell, P.A., Allison, J., Anderson, S.F., Andrew, J.R., Angel, J.R.P., Armus, L., Arnett, D., Asztalos, S.J., Axelrod, T.S., et al.: LSST Science Book, Version 2.0 (2009). arxiv:0912.0201

    Google Scholar 

  10. Nelder, J.A., Wedderburn, R.W.M.: Generalized linear models. J. R. Stat. Soc., Ser. A, Gen. 135, 370–384 (1972)

    Google Scholar 

  11. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Pindyck, R.S., Rubinfeld, D.L.: Econometric Models and Economic Forecasts, vol. 4. Irwin/McGraw-Hill, Boston (1998)

    Google Scholar 

  13. Refregier, A., Amara, A., Kitching, T.D., Rassat, A., Scaramella, R., Weller, J., Euclid Imaging Consortium, f. t.: Euclid Imaging Consortium Science Book (2010). arxiv:1001.0061

    Google Scholar 

  14. York, D.G., Adelman, J., Anderson, J.E., Jr., Anderson, S.F., Annis, J., Bahcall, N.A., Bakken, J.A., Barkhouser, R., et al., SDSS Collaboration: The sloan digital sky survey: technical summary. AJ 120, 1579–1587 (2000). doi: 10.1086/301513

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank V. Busti, E. D. Feigelson, M. Killedar, J. Buchner, and A. Trindade for interesting suggestions and comments. JE, RSS and EEOI thank the SIM Laboratory of the Universidade de Lisboa for hospitality during the development of this work. Cosmostatistics Initiative (COIN)Footnote 6 is a non-profit organisation whose aim is to nourish the synergy between astrophysics, cosmology, statistics and machine learning communities. This work was partially supported by the ESA VA4D project (AO 1-6740/11/F/MOS). AKM thanks the Portuguese agency Fundação para Ciência e TecnologiaFCT, for financial support (SFRH/BPD/74697/2010). EEOI is partially supported by the Brazilian agency CAPES (grant number 9229-13-2). Work on this paper has substantially benefited from using the collaborative website AWOB developed and maintained by the Max-Planck Institute for Astrophysics and the Max-Planck Digital Library. This work was written on the collaborative WriteLatex platform, and made use of the GitHub a web-based hosting service and git version control software. This work made use of the cloud based hosting platform ShinyApps.io. This work used the following public scientific Python packages scikit-learn v0.15 [11], seaborn v0.3.1, and statsmodels v0.6.0. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Elliott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Elliott, J., de Souza, R.S., Krone-Martins, A., Cameron, E., Ishida, E.E.O., Hilbe, J. (2016). Using Gamma Regression for Photometric Redshifts of Survey Galaxies. In: Napolitano, N., Longo, G., Marconi, M., Paolillo, M., Iodice, E. (eds) The Universe of Digital Sky Surveys. Astrophysics and Space Science Proceedings, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-19330-4_13

Download citation

Publish with us

Policies and ethics