Skip to main content

Molecular Approach to Hopfield Neural Network

  • Conference paper
Book cover Artificial Intelligence and Soft Computing (ICAISC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9119))

Included in the following conference series:

Abstract

The present article puts forward a completely new technology development , a spin glass-like molecular implementation of the Hopfield neural structure. This novel approach uses magnetic molecules homogenously distributed in mesoporous silica matrix, which forms a base for a converting unit, an equivalent of a neuron in the Hopfield network. Converting units interact with each other via a fully controlled magnetic fields, which corresponds to weighted interconnections in the Hopfield network. This novel technology enables building fast, high-density content addressable associative memories. In particular, it is envisaged that in the future this approach can be scaled up to mimic memory with human-like characteristics. This would be a breakthrough in artificial brain implementations and usher in a new type of highly intelligent beings. Another application relates to systems designed for multi-objective optimization (multiple criteria decision making).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnihotri, P., Bandyopadhyay, S.: Analysis of the two-dimensional datta–das spin field effect transistor. Physica E: Low-dimensional Systems and Nanostructures 42(5), 1736–1740 (2010)

    Article  Google Scholar 

  2. Al-askar, H., Lamb, D., Hussain, A.J., Al-Jumeily, D., Randles, M., Fergus, P.: Predicting financial time series data using artificial immune system-inspired neural networks. Journal of Artifcial Intelligence and Soft Computing Research 5(1), 45–68 (2015)

    Article  Google Scholar 

  3. Anand, K., Raman, S., Subramanian, K.: Implementing a neuro fuzzy expert system for optimising the performance of chemical recovery boiler. Journal of Artifcial Intelligence and Soft Computing Research 4(2/3), 249–263 (2014)

    Article  Google Scholar 

  4. Bali, S., Jha, D., Kumar, D., Pham, H.: Fuzzy multi-objective build-or-buy approach for component selection of fault tolerant software system under consensus recovery block scheme with mandatory redundancy in critical modules. Journal of Artifcial Intelligence and Soft Computing Research 4(2/3), 98–119 (2014)

    Article  Google Scholar 

  5. Cierniak, R.: New neural network algorithm for image reconstruction from fan-beam projections. Neurocomputing 72(13-15), 3238–3244 (2009), Hybrid Learning Machines (HAIS 2007)/Recent Developments in Natural Computation (ICNC 2007)

    Google Scholar 

  6. Cornia, A., Mannini, M., Sainctavit, P., Sessoli, R.: Chemical strategies and characterization tools for the organization of single molecule magnets on surfaces. Chem. Soc. Rev. 40, 3076–3091 (2011)

    Article  Google Scholar 

  7. Cpalka, K.: A new method for design and reduction of neuro fuzzy classification systems. IEEE Transactions on Neural Networks 20(4), 701–714 (2009)

    Article  Google Scholar 

  8. Cpalka, K., Rutkowski, L.: Flexible takagi sugeno neuro fuzzy structures for nonlinear approximation. WSEAS Transactions on Systems 5, 1450–1458 (2005)

    Google Scholar 

  9. Das, P., Pettersson, F., Dutta, S.: Pruned-bimodular neural networks for modelling of strength-ductility balance of hsla steel plates. Journal of Artifcial Intelligence and Soft Computing Research 4(4), 354–372 (2014)

    Article  Google Scholar 

  10. El-Laithy, K., Bogdan, M.: Synchrony state generation: an approach using stochastic synapses. Journal of Artificial Intelligence and Soft Computing Research 1, 17–25 (2011)

    Google Scholar 

  11. Hopfield, J., Feinstein, D., Palmer, R.: Unlearning has a stabilizing effect in collective memories. Nature 304, 158–159 (1983)

    Article  Google Scholar 

  12. Hopfield, J., Tank, D.: Computing with neural circuits: A model. Science 233, 624–633 (1986)

    Article  Google Scholar 

  13. Katiyar, R., Pathak, V.K., Arya, K.: Human gait recognition system based on shadow free silhouettes using truncated singular value decomposition transformation model. Journal of Artifcial Intelligence and Soft Computing Research 4(4), 283–301 (2014)

    Article  Google Scholar 

  14. Korytkowski, M., Nowicki, R., Rutkowski, L., Scherer, R.: AdaBoost ensemble of DCOG rough–neuro–fuzzy systems. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.) ICCCI 2011, Part I. LNCS, vol. 6922, pp. 62–71. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  15. Korytkowski, M., Rutkowski, L., Scherer, R.: From ensemble of fuzzy classifiers to single fuzzy rule base classifier. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 265–272. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Laskowski, L., Laskowska, M.: Functionalization of sba-15 mesoporous silica by cu-phosphonate units: Probing of synthesis route. Journal of Solid State Chemistry 220, 221–226 (2014)

    Article  Google Scholar 

  17. Laskowski, L., Laskowska, M., Balanda, M., Fitta, M., Kwiatkowska, J., Dzilinski, K., Karczmarska, A.: Mesoporous silica sba-15 functionalized by nickel-phosphonic units: Raman and magnetic analysis. Microporous and Mesoporous Materials 200, 253–259 (2014)

    Article  Google Scholar 

  18. Nowicki, R., Pokropińska, A.: Information criterions applied to neuro-fuzzy architectures design. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 332–337. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Nowicki, R., Rutkowska, D.: Neuro–fuzzy systems based on Gödel and Sharp implication. In: Proceedings of Intern. Conference Application of Fuzzy Systems and Soft Computing — ICAFS 2000, Siegen, Germany, pp. 232–237 (June 2000)

    Google Scholar 

  20. Nowicki, R., Scherer, R., Rutkowski, L.: A method for learning of hierarchical fuzzy systems. In: Sincak, P., et al. (eds.) Intelligent Technologies – Theory and Applications, pp. 124–129. IOS Press, Amsterdam (2002)

    Google Scholar 

  21. Oliver, T., Buettner, J., Bauer, M., Demokritov, S., Kivshar, Y., Grimalsky, V., Rapoport, Y., Slavin, A.: Linear and nonlinear diffraction of dipolar spin waves in yttrium iron garnet films observed by space- and time-resolved brillouin light scattering (1999)

    Google Scholar 

  22. Redi, J., Gastaldo, P., Zunino, R.: A two-layer neural system for reduced-reference visual quality assessment. Journal of Artificial Intelligence and Soft Computing Research 1, 27–41 (2011)

    Google Scholar 

  23. Rutkowski, L., Przybył, A., Cpałka, K., Er, M.J.: Online speed profile generation for industrial machine tool based on neuro-fuzzy approach. In: Rutkowski, L., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS (LNAI), vol. 6114, pp. 645–650. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Scherer, R.: Neuro-fuzzy relational systems for nonlinear approximation and prediction. Nonlinear Analysis 71, e1420–e1425 (2009)

    Google Scholar 

  25. Scherer, R., Rutkowski, L.: A fuzzy relational system with linguistic antecedent certainty factors. In: Rutkowski, Kacprzyk (eds.) Proceedings of the Sixth International Conference on Neural Network and Soft Computing, Zakopane, Poland, June 11-15, 2002. Advances in Soft Computing, pp. 563–569. Springer, Physica-Verlag (2003)

    Google Scholar 

  26. Scherer, R., Rutkowski, L.: Neuro-fuzzy relational classifiers. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 376–380. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  27. Starczewski, J., Scherer, R., Korytkowski, M., Nowicki, R.: Modular type-2 neuro-fuzzy systems. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM 2007. LNCS, vol. 4967, pp. 570–578. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Laskowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Laskowski, Ł., Laskowska, M., Jelonkiewicz, J., Boullanger, A. (2015). Molecular Approach to Hopfield Neural Network. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2015. Lecture Notes in Computer Science(), vol 9119. Springer, Cham. https://doi.org/10.1007/978-3-319-19324-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19324-3_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19323-6

  • Online ISBN: 978-3-319-19324-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics