International Workshop on Combinatorial Algorithms

IWOCA 2014: Combinatorial Algorithms pp 226-237 | Cite as

The Min-max Edge q-Coloring Problem

  • Tommi Larjomaa
  • Alexandru PopaEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8986)


In this paper we introduce and study a new problem named min-max edge q -coloring which is motivated by applications in wireless mesh networks. The input of the problem consists of an undirected graph and an integer q. The goal is to color the edges of the graph with as many colors as possible such that: (a) any vertex is incident to at most q different colors, and (b) the maximum size of a color group (i.e. set of edges identically colored) is minimized. We show the following results:
  1. 1.

    Min-max edge q-coloring is NP-hard, for any \(q \ge 2\).

  2. 2.

    A polynomial time exact algorithm for min-max edge q-coloring on trees.

  3. 3.

    Exact formulas of the optimal solution for cliques.

  4. 4.

    An approximation algorithm for planar graphs.




We would like to thank anonymous reviewers for their useful comments.


  1. 1.
    Adamaszek, A., Popa, A.: Approximation and hardness results for the maximum edge q-coloring problem. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp. 132–143. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  2. 2.
    Akyildiz, I., Wang, X., Wang, W.: Wireless mesh networks: a survey. Comput. Netw. 47(4), 445–487 (2005)zbMATHCrossRefGoogle Scholar
  3. 3.
    Draves, R., Padhye, J., Zill, B.: Routing in multi-radio, multi-hop wireless mesh networks. In: MobiCom 2004, pp. 114–128. ACM (2004)Google Scholar
  4. 4.
    Feng, W., Chen, P., Zhang, B.: Approximate maximum edge coloring within factor 2: a further analysis. In: ISORA, pp. 182–189 (2008)Google Scholar
  5. 5.
    Feng, W., Zhang, L., Qu, W., Wang, H.: Approximation algorithms for maximum edge coloring problem. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS, vol. 4484, pp. 646–658. Springer, Heidelberg (2007) CrossRefGoogle Scholar
  6. 6.
    Feng, W., Zhang, L., Wang, H.: Approximation algorithm for maximum edge coloring. Theor. Comput. Sci. 410(11), 1022–1029 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Gupta, B., Acharya, B., Mishra, M.: Optimization of routing algorithm in wireless mesh networks. In: NaBIC 2009, pp. 1150–1155. IEEE (2009)Google Scholar
  8. 8.
    Kyasanur, P., Vaidya, N.: Routing and interface assignment in multi-channel multi-interface wireless networks. In: Proceedings of IEEE Wireless Communications and Networking Conference 2005, vol. 4, pp. 2051–2056. IEEE (2005)Google Scholar
  9. 9.
    Larjomaa, T., Popa, A.: The min-max edge q-coloring problem. CoRR abs/1302.3404 (2013)Google Scholar
  10. 10.
    Lipton, R., Tarjan, R.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Muir, A., Garcia-Luma-Aceves, J.: A channel access protocol for multihop wireless networks with multiple channels. In: ICC 1998, vol. 3, pp. 1617–1621, June 1998Google Scholar
  12. 12.
    Raniwala, A., Chiueh, T.: Architecture and algorithms for an IEEE 802.11-based multi-channel wireless mesh network. In: INFOCOM, pp. 2223–2234. IEEE (2005)Google Scholar
  13. 13.
    Raniwala, A., Gopalan, K., Chiueh, T.: Centralized channel assignment and routing algorithms for multi-channel wireless mesh networks. Mob. Comput. Commun. Rev. 8(2), 50–65 (2004)CrossRefGoogle Scholar
  14. 14.
    Schaefer, T.: The complexity of satisfiability problems. In: STOC 1978, pp. 216–226. ACM, New York (1978)Google Scholar
  15. 15.
    So, J., Vaidya, N.: Multi-channel mac for ad hoc networks: handling multi-channel hidden terminals using a single transceiver. In: MobiHoc 2004, pp. 222–233. ACM (2004)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Communications and NetworkingAalto University School of Electrical EngineeringAaltoFinland
  2. 2.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations