Skip to main content

Approximation and Hardness Results for the Maximum Edges in Transitive Closure Problem

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8986))

Included in the following conference series:

  • International Workshop on Combinatorial Algorithms

Abstract

In this paper we study the following problem, named Maximum Edges in Transitive Closure, which has applications in computational biology. Given a simple, undirected graph \(G = (V,E)\) and a coloring of the vertices, remove a collection of edges from the graph such that each connected component is colorful (i.e., it does not contain two identically colored vertices) and the number of edges in the transitive closure of the graph is maximized.

The problem is known to be APX-hard, and no approximation algorithms are known for it. We improve the hardness result by showing that the problem is NP-hard to approximate within a factor of \(|V|^{1/3 - \varepsilon }\), for any constant \(\varepsilon > 0\). Additionally, we show that the problem is APX-hard already for the case when the number of vertex colors equals 3. We complement these results by showing the first approximation algorithm for the problem, with approximation factor \(\sqrt{2 \cdot \text {OPT}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adamaszek, A., Popa, A.: Algorithmic and hardness results for the colorful components problems. In: Pardo, A., Viola, A. (eds.) LATIN 2014. LNCS, vol. 8392, pp. 683–694. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  2. Avidor, A., Langberg, M.: The multi-multiway cut problem. Theoret. Comput. Sci. 377(1–3), 35–42 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bruckner, S., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Evaluation of ILP-based approaches for partitioning into colorful components. In: Demetrescu, C., Marchetti-Spaccamela, A., Bonifaci, V. (eds.) SEA 2013. LNCS, vol. 7933, pp. 176–187. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Bruckner, S., Hüffner, F., Komusiewicz, C., Niedermeier, R., Thiel, S., Uhlmann, J.: Partitioning into colorful components by minimum edge deletions. In: Kärkkäinen, J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 56–69. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  5. He, G., Liu, J., Zhao, C.: Approximation algorithms for some graph partitioning problems. J. Graph Algorithms Appl. 4(2), 1–11 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Petrank, E.: The hardness of approximation: gap location. Comput. Complex. 4(2), 133–157 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Rizzi, R., Sikora, F.: Some results on more flexible versions of graph motif. In: Hirsch, E.A., Karhumäki, J., Lepistö, A., Prilutskii, M. (eds.) CSR 2012. LNCS, vol. 7353, pp. 278–289. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Sankoff, D.: OMG! orthologs for multiple genomes - competing formulations. In: Chen, J., Wang, J., Zelikovsky, A. (eds.) ISBRA 2011. LNCS, vol. 6674, pp. 2–3. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Savard, O.T., Swenson, K.M.: A graph-theoretic approach for inparalog detection. BMC Bioinform. 13(S–19), S16 (2012)

    Article  Google Scholar 

  10. Zheng, C., Swenson, K., Lyons, E., Sankoff, D.: OMG! orthologs in multiple genomes – competing graph-theoretical formulations. In: Przytycka, T.M., Sagot, M.-F. (eds.) WABI 2011. LNCS, vol. 6833, pp. 364–375. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput. 3(1), 103–128 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Popa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Adamaszek, A., Blin, G., Popa, A. (2015). Approximation and Hardness Results for the Maximum Edges in Transitive Closure Problem. In: Jan, K., Miller, M., Froncek, D. (eds) Combinatorial Algorithms. IWOCA 2014. Lecture Notes in Computer Science(), vol 8986. Springer, Cham. https://doi.org/10.1007/978-3-319-19315-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19315-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19314-4

  • Online ISBN: 978-3-319-19315-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics