Skip to main content

Self-Assembly Structures in ZnFexMn(2-x)O4 Ceramics and Effect on Thermal Properties

  • Conference paper
  • First Online:
Protection of Materials and Structures from the Space Environment

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 47))

Abstract

Thermoelectric technology has been regarded as a perfect energy source on spacecraft thanks to its advantages such as no moving part, zero emission and high stability in harsh environment. ZnFexMn(2-x)O4 ceramics were fabricated and self-assembly structures were observed in the sample of some compositions, which may be of benefit to the thermoelectric performance. In this paper, the applications of thermoelectric technology on spacecraft were briefly reviewed. The synthesis method and crystal structures of ZnFexMn(2-x)O4 ceramics were also introduced. Furthermore, the phase transitions in the system were carefully studied by SEM technique. Finally, the heat capacities and thermal diffusivities, which were key parameters of thermoelectric performance, were measured.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vining CB, Rowe DM, Stockholm J, Rao KR (2006) History of the International Thermoelectric Society. In: Thermoelectrics handbook–macro to nano, D. M. Rowe, CRC Taylor & Francis Group, Appendix 1–8

    Google Scholar 

  2. Gould CA, Shammas NYA, Grainger S, Taylor I (2008) A comprehensive review of thermoelectric technology, micro-electrical and power generation properties. 26th International Conference on Microelectronics, Vol. 1 and 2, Proceedings, IEEE, New York, pp 329–332

    Google Scholar 

  3. Tritt TM, Subramanian MA (2006) Thermoelectric materials, phenomena, and applications: a bird’s eye view. MRs Bull 31(3):188–194

    Article  Google Scholar 

  4. Ohtaki M (2011) Recent aspects of oxide thermoelectric materials for power generation from mid-to-high temperature heat source. J Ceram Soc Japan 119(1395):770–775

    Article  Google Scholar 

  5. Nolas GS, Poon J, Kanatzidis M (2006) Recent developments in bulk thermoelectric materials. MRs Bull 31(3):199–205

    Article  Google Scholar 

  6. Goldsmid HJ (2009) Introduction to thermoelectricity. Springer, Berlin

    Google Scholar 

  7. Riffat SB, Ma X (2003) Thermoelectrics: a review of present and potential applications. Appl Therm Eng 23(8):913–935

    Article  Google Scholar 

  8. Yang J (2005) Potential applications of thermoelectric waste heat recovery in the automotive industry Thermoelectrics, ICT 2005. 24th International Conference, pp 170–174

    Google Scholar 

  9. LaLonde AD, Pei Y, Wang H, Snyder GJ (2011) Lead telluride alloy thermoelectrics. Mater Today 14(11):526–532

    Article  Google Scholar 

  10. DiSalvo FJ (1999) Thermoelectric cooling and power generation. Science 285(5428):703–706

    Article  Google Scholar 

  11. Slack GA (1997) Design concepts for improved thermoelectric materials. Thermoelectric Mat—New Directions and Approaches 478:47–54

    Google Scholar 

  12. Terasaki I, Sasago Y, Uchinokura K (1997) Large thermoelectric power in NaCo2O4 single crystals. Phys Rev B 56(20):12685–12687

    Article  Google Scholar 

  13. Smith GE, Wolfe R (1962) Thermoelectric properties of bismuth-antimony alloys. J Appl Phys 33(3):841

    Article  Google Scholar 

  14. Yim WM, Amith A (1972) Bi-Sb Alloys for magneto-thermoelectric and thermomagnetic cooling. Solid State Electron 15(10):1141

    Article  Google Scholar 

  15. Goldsmid HJ (1958) The electrical conductivity and thermoelectric power of bismuth telluride. Proc Phys Soc Lond 71(460):633–646

    Article  Google Scholar 

  16. Wright DA (1958) Thermoelectric properties of bismuth telluride and its alloys. Nature 181(4612):834–834

    Article  Google Scholar 

  17. Goldsmid HJ, Giutronich JE, Kaila MM (1980) Solar thermoelectric generation using bismuth telluride alloys. Sol Energy 24(5):435–440

    Article  Google Scholar 

  18. Wyrick R, Levinstein H (1950) Thermoelectric voltage in lead telluride. Phys Rev 78(3):304–305

    Article  Google Scholar 

  19. Lambrecht A, Bottner H, Nurnus J (2004) Thermoelectric energy conversion—overview of a TPV alternative. Thermophotovoltaic Generation of Electricity. A. C. T. J. L. J. Gopinath, Vol. 738, pp 24–32

    Google Scholar 

  20. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7(2):105–114

    Article  Google Scholar 

  21. Mandel N, Donohue J (1971) Refinement of crystal structure of skutterudite CoAs3. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem B27(15):2288

    Article  Google Scholar 

  22. Sales BC, Mandrus D, Chakoumakos BC, Keppens V, Thompson JR (1997) Filled skutterudite antimonides: electron crystals and phonon glasses. Phys Rev B 56(23):15081–15089

    Article  Google Scholar 

  23. Macnicol DD, McKendrick JJ, Wilson DR (1978) Clathrates and molecular inclusion phenomena. Chem Soc Rev 7(1):65–87

    Article  Google Scholar 

  24. Kuznetsov VL, Kuznetsova LA, Kaliazin AE, Rowe DM (2000) Preparation and thermoelectric properties of A(8)(II)B(16)(III)B(30)(IV) clathrate compounds. J Appl Phys 87(11):7871–7875

    Article  Google Scholar 

  25. Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47(19):12727–12731

    Article  Google Scholar 

  26. Hicks LD, Dresselhaus MS (1993) Thermoelectric figure of merit of a one-dimensional conductor. Phys Rev B 47(24):16631–16634

    Article  Google Scholar 

  27. Venkatasubramanian R, Siivola E, Colpitts T, O'Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856):597–602

    Article  Google Scholar 

  28. Harman TC, Taylor PJ, Walsh MP, LaForge BE (2002) Quantum dot superlattice thermoelectric materials and devices. Science 297(5590):2229–2232

    Article  Google Scholar 

  29. Koh YK, Vineis CJ, Calawa SD, Walsh MP, Cahill DG (2009) Lattice thermal conductivity of nanostructured thermoelectric materials based on PbTe. Appl Phys Lett 94(15):153101. doi: 10.1063/1.3117228

  30. Boukai AI, Bunimovich Y, Tahir-Kheli J, Yu JK, Goddard WA, Heath JR (2008) Silicon nanowires as efficient thermoelectric materials. Nature 451(7175):168–171

    Article  Google Scholar 

  31. Masset AC, Michel C, Maignan A, Hervieu M, Toulemonde O, Studer F, Raveau B, Hejtmanek J (2000) Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys Rev B 62(1):166–175

    Article  Google Scholar 

  32. Shikano M, Funahashi R (2003) Electrical and thermal properties of single-crystalline (Ca2CoO3)(0.7)CoO2 with a Ca3Co4O9 structure. Appl Phys Lett 82(12):1851–1853

    Article  Google Scholar 

  33. Okuda T, Nakanishi K, Miyasaka S, Tokura Y (2001) Large thermoelectric response of metallic perovskites: Sr1-xLaxTiO3 (0 < = x < = 0.1). Phys Rev B 63(11), 113104

    Google Scholar 

  34. Koumoto K, Terasaki I, Funahashi R (2006) Complex oxide materials for potential thermoelectric applications. MRs Bull 31(3):206–210

    Article  Google Scholar 

  35. Funahashi R, Urata S, Mizuno K, Kouuchi T, Mikami M (2004) Ca2.7Bi0.3Co4O9/ La0.9Bi0.1NiO3 thermoelectric devices with high output power density. Appl Phys Lett 85(6):1036–1038

    Article  Google Scholar 

  36. Funahashi R, Mihara T, Mikami M, Urata S, Ando N (2005) Power generation of thermoelectric oxide modules. ICT: 2005 24th International Conference on Thermoelectrics, pp 295–302

    Google Scholar 

  37. Ji X, Zhang B, Tritt TM, Kolis JW, Umbhar A (2007) Solution-chemical syntheses of nano-structured Bi2Te3 and PbTe thermoelectric materials. J Electron Mater 36(7):721–726

    Article  Google Scholar 

  38. Zhang YH, Xu GY, Han F, Wang Z, Ge CC (2010) Preparation and thermoelectric properties of nanoporous Bi2Te3-based alloys. J Electron Mater 39(9):1741–1745

    Article  Google Scholar 

  39. Whitesides GM, Grzybowski B (2002) Self-assembly at all scales. Science 295(5564):2418–2421

    Article  Google Scholar 

  40. De Rosa C, Park C, Thomas EL, Lotz B (2000) Microdomain patterns from directional eutectic solidification and epitaxy. Nature 405(6785):433–437

    Article  Google Scholar 

  41. Ikeda TL, Collins A, Ravi VA, Gascoin FS, Haile SM, Snyder GJ (2007) Self-assembled nanometer lamellae of thermoelectric PbTe and Sb2Te3 with epitaxy-like interfaces. Chem Mater 19(4):763–767

    Article  Google Scholar 

  42. Yeo S, Horibe Y, Mori S, Tseng CM, Chen CH, Khachaturyan AG, Zhang CL, Cheong SW (2006) Solid state self-assembly of nanocheckerboards. Appl Phys Lett 89(23):233120. doi: 10.1063/1.2402115

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, B., Dai, J., Liu, C. (2017). Self-Assembly Structures in ZnFexMn(2-x)O4 Ceramics and Effect on Thermal Properties. In: Kleiman, J. (eds) Protection of Materials and Structures from the Space Environment. Astrophysics and Space Science Proceedings, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-319-19309-0_42

Download citation

Publish with us

Policies and ethics