Potential Space Applications of Nanomaterials

  • Lev S. NovikovEmail author
  • Ekaterina N. Voronina
Conference paper
Part of the Astrophysics and Space Science Proceedings book series (ASSSP, volume 47)


This paper deals with physical fundamentals of nanomaterial structure and properties, their classification and the peculiarities of different classes, and the main potential applications of these materials in the next generation spacecraft. Some results of the experimental and mathematical simulation of the space environment influence on nanostructures are given.


Nanomaterials Nanostructures Nanocomposites Spacecraft Space environment Durability 


  1. 1.
    Kelsall RW, Hamley IW, Geoghegan M (eds) (2005) Nanoscale science and technology. Wiley, New York, NYGoogle Scholar
  2. 2.
    ISO/TS: 27687 (2008) Nanotechnologies—terminology and definitions for nano-objects.
  3. 3.
  4. 4.
    Lyakishev NP, Alymov MI (2006) Structural nanomaterials. Nanotech Russia 1(2):71–81 (in Russian)Google Scholar
  5. 5.
    Gogotsi Y (ed) (2006) Carbon nanomaterials. Taylor & Francis Group, OxfordGoogle Scholar
  6. 6.
    Gao B, Chen YF, Fuhrer MS et al (2005) Four-point resistance of individual single-wall carbon nanotubes. Phys Rev Lett 95:196802CrossRefGoogle Scholar
  7. 7.
    Pop E, Mann D, Wang Q et al (2006) Thermal conductance of an individual single-wall carbon nanotube above room temperature. Nano Lett 6(1):96–100CrossRefGoogle Scholar
  8. 8.
    Ghosh S, Calizo I, Teweldebrhan D et al (2008) Extremely high thermal conductivity of graphene. Appl Phys Lett 92(15):151911CrossRefGoogle Scholar
  9. 9.
    Neto AHC, Novoselov KS (2011) New directions in science and technology: two-dimensional crystals. Rep Prog Phys 74:082501CrossRefGoogle Scholar
  10. 10.
    Golberg D, Bando Y, Tang C, Zhi C (2007) Boron nitride nanotubes. Adv Mater 19:2413–2432CrossRefGoogle Scholar
  11. 11.
    Novikov LS (1999) Contemporary state of spacecraft/environment interaction research. Radiat Meas 30:661–667CrossRefGoogle Scholar
  12. 12.
    Watson KA, Connell JW (2006) Polymer and carbon nanotube composites for space applications. In: Dai L (ed) Carbon nanotechnology: recent developments in chemistry, physics, materials science and device applications. Elsevier, Amsterdam, pp 676–698Google Scholar
  13. 13.
    Baur J, Silverman E (2007) Challenges and opportunities in multifunctional nano-composite structures for aerospace applications. MRS Bull 32:328CrossRefGoogle Scholar
  14. 14.
    Ackland G (2010) Controlling radiation damage. Science 327:1587–1588CrossRefGoogle Scholar
  15. 15.
    Andrievskii RA (2010) Effect of irradiation on the properties of nanomaterials. Phys Metals Metallogr 110(3):229–240CrossRefGoogle Scholar
  16. 16.
    Krasheninnikov AV, Nordlund K (2010) Ion and electron irradiation-induced effects in nano-structured materials. J Appl Phys 107:071301CrossRefGoogle Scholar
  17. 17.
    Mohanty S, Ross R (eds) (2008) Multiscale simulation methods for nanomaterials. Wiley, New York, NYGoogle Scholar
  18. 18.
    Voronina EN, Novikov LS, Chernik VN et al (2012) Mathematical and experimental simulation of impact of atomic oxygen of the Earth’s upper atmosphere on nanostructures and polymer composites. Inorg Mater: Appl Res 3(2):95–101CrossRefGoogle Scholar
  19. 19.
    Walker JG (1984) Satellite constellations. J Br Interplanet Soc 37:559–571Google Scholar
  20. 20.
    National Science and Technology Council (2004) Nanotechnology in space exploration.
  21. 21.
    Ineke Malsch (ed) (2007) Nanotechnology in Aerospace 9th Nanoforum report. Accessed December 2014.
  22. 22.
    Meador MM et al (2010) NASA nanotechnology roadmap. Technology area 10.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear PhysicsMoscowRussia

Personalised recommendations