Skip to main content

Time Domain Integral Equation Methods in Computational Electromagnetism

  • Chapter
Book cover Computational Electromagnetism

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2148))

Abstract

Time domain integral equations have become a major tool in the computational analysis of electromagnetic scattering problems. Classically it was difficult to ensure a stable numerical solution of standard boundary integral formulations of the problem. In this chapter we shall discuss both theoretical and numerical aspects of one approach that solves the stability problem: convolution quadrature. We start with scattering from a perfectly conducting object and develop the electric field integral equation, as well as an error analysis of the fully discrete problem using finite elements in space. After presenting a brief discussion of some special numerical features of this problem, and some numerical results, we move on to scattering by a penetrable object. We end with a general discussion of computational electromagnetism illustrating the role that time domain integral equations can play.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.A. Balanis, Advanced Engineering Electromagnetics, 2nd edn. (Wiley, New York, 2012)

    Google Scholar 

  2. J. Ballani, L. Banjai, S. Sauter, A. Veit, Numerical solution of exterior Maxwell problems by Galerkin BEM and Runge–Kutta convolution quadrature. Numer. Math. 123, 643–670 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Bamberger, T.H. Duong, Formulation variationnelle espace-temps pour le calcul par potentiel retarde de la diffraction d’une onde acoustique (I). Math. Methods Appl. Sci. 8, 405–435 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Banjai, S. Sauter, Rapid solution of the wave equation in unbounded domains. SIAM J. Numer. Anal. 47, 227–49 (2008)

    Article  MathSciNet  Google Scholar 

  5. L. Banjai, C. Lubich, J. Melenk, Runge-Kutta convolution quadrature for operators arising in wave propagation. Numer. Math. 119, 1–20 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Banjai, M. Messner, M. Schanz, Runge-Kutta convolution quadrature for the boundary element method. Comput. Methods Appl. Mech. Eng. 245, 90–101 (2012)

    Article  MathSciNet  Google Scholar 

  7. L. Banjai, C. Lubich, F.-J. Sayas, Stable numerical coupling of exterior and interior problems for the wave equation. Published on archiv.org (2013). arXiv:1309.2649v1 [math.NA]

    Google Scholar 

  8. A. Bendali, Numerical analysis of the exterior boundary value problem for the time harmonic Maxwell equations by a boundary finite element method, part I: the continuous problem. Math. Comput. 43, 29–46 (1984)

    MathSciNet  MATH  Google Scholar 

  9. A. Bendali, Numerical analysis of the exterior boundary value problem for the time harmonic Maxwell equations by a boundary finite element method, part II: the discrete problem. Math. Comput. 43, 47–68 (1984)

    MathSciNet  MATH  Google Scholar 

  10. J. Bérenger, A perfectly matched layer for the absorption of electromagnetics waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MathSciNet  Google Scholar 

  11. J. Blowey, M. Jensen (eds.), Introduction to Applications of Numerical Analysis in Time Domain Computational Electromagnetism. Lecture Notes in Computational Science and Engineering, vol. 85 (Springer, New York, 2010)

    Google Scholar 

  12. M. Bluck, S. Walker, M. Pocock, The extension of time-domain integral equation analysis to scattering from imperfectly conducting bodies. IEEE Trans. Antennas Propag. 49, 875–879 (2001)

    Article  MathSciNet  Google Scholar 

  13. B. Bollobás, Modern Graph Theory (Springer, New York, 2013)

    Google Scholar 

  14. F. Brezzi, M. Fortin, Mixed and Hybrid Finite Element Methods (Springer, New York, 1991)

    Book  MATH  Google Scholar 

  15. O. Bruno, Fast, high-order, high-frequency integral methods for computational acoustics and electromagnetics, in Topics in Computational Wave Propagation: Direct and Inverse Problems, ed. by M. Ainsworth, P. Davies, D. Duncan, B. Rynne, P. Martin (Springer, New York, 2003), pp. 43–82

    Chapter  Google Scholar 

  16. O. Bruno, L. Kunyansky, A fast, high-order algorithm for the solution of surface scattering problems: basic implementations, tests, and applications. J. Comput. Phys. 169, 80–110 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. O. Bruno, T. Elling, R. Paffenroth, C. Turc, tic integral equations requiring small numbers of Krylov-subspace iterations. J. Comput. Phys. 228, 6169–6183 (2009)

    Google Scholar 

  18. A. Buffa, S. Christiansen, A dual finite element complex on the barycentric refienement. Math. Comput. 76, 1743–1769 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Buffa, R. Hiptmair, A coercive combined field integral equation for electromagnetic scattering. SIAM J. Numer. Anal. 42, 621–40 (2004)

    Article  MathSciNet  Google Scholar 

  20. A. Buffa, M. Costabel, D. Sheen, On the traces of \(\mathbf{H}(\mathbf{curl},\varOmega )\) in Lipschitz domains. J. Math. Anal. Appl. 276, 845–867 (2003)

    Article  MathSciNet  Google Scholar 

  21. A. Buffa, R. Hiptmair, T. von Petersdorff, C. Schwab, Boundary element methods for Maxwell transmission problems in Lipschitz domains. Numer. Math. 95, 459–85 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. F.-C. Chan, P. Monk, Time dependent electromagnetic scattering by a penetrable obstacle. BIT Numer. Math. 55, 5–31 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Q. Chen, Convolution quadrature applied to time domain acoustic and electromagnetic problems, Ph.D. thesis, University of Delaware, Newark, 2011

    Google Scholar 

  24. Q. Chen, P. Monk, Discretization of the time domain CFIE for acoustic scattering problems using convolution quadrature. SIAM J. Math. Anal. 46, 3107–3130 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Q. Chen, P. Monk, Time domain CFIEs for electromagnetic scattering problems. Appl. Numer. Math. 79, 62–78 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Q. Chen, P. Monk, D. Weile, Analysis of convolution quadrature applied to the time electric field integral equation. Commun. Comput. Phys. 11, 383–399 (2012)

    MathSciNet  Google Scholar 

  27. G. Cohen, Higher-Order Numerical Methods for Transient Wave Equations (Springer, Berlin, 2002)

    Book  MATH  Google Scholar 

  28. D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 3rd edn. (Springer, New York, 2012)

    Google Scholar 

  29. J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex fourier series. Math. Comput. 19, 297–301 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  30. K. Cools, F.P. Andriulli, F. Olyslager, E. Michielssen, Time domain calderon identities and their application to the integral equation analysis of scattering by pec objects, part i: preconditioning. IEEE Trans. Antennas Propag. 57, 2352–2364 (2009)

    Article  MathSciNet  Google Scholar 

  31. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 3rd edn. (MIT, Cambridge, 2009)

    MATH  Google Scholar 

  32. E. Darve, The fast multipole method: numerical implementation. J. Comput. Phys. 160, 195–240 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. P.J. Davies, D.B. Duncan, Convolution-in-time approximations of time domain boundary integral equations. SIAM J. Sci. Comput. 35, B43–B61 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. M.G. Duffy, Quadrature over a pyramid or cube of integrands with a singularity at a vertex. SIAM J. Numer. Anal. 19, 1260–1262 (1983)

    Article  MathSciNet  Google Scholar 

  35. D. Dunavant, High degree efficient symmetrical gaussian quadrature rules for the triangle. Int. J. Numer. Methods Eng. 21, 1129–1148 (1985)

    Article  MathSciNet  Google Scholar 

  36. O. Ernst, M. Gander, Why it is difficult to solve Helmholtz problems with classical iterative methods, in Numerical Analysis of Multiscale Problems, ed. by I. Graham, T. Hou, O. Lakkis, R. Scheichl (Springer, New York, 2012), pp. 325–363

    Chapter  Google Scholar 

  37. D. Givoli, High-order local non-reflecting boundary conditions: a review. Wave Motion 39, 319–326 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. R.D. Graglia, D.R. Wilton, A.F. Peterson, Higher order interpolatory vector bases for computational electromagnetics. IEEE Trans. Antennas Propag. AP-45, 329–342 (1997)

    Article  Google Scholar 

  39. T. Ha-Duong, On retarded potential boundary integral equations and their discretizations, in Topics in Computational Wave Propagation: Direct and Inverse Problems, ed. by M. Ainsworth, P. Davies, D. Duncan, B. Rynne, P. Martin (Springer, New York, 2003), pp. 301–336

    Chapter  Google Scholar 

  40. W. Hackbusch, W. Kress, S. Sauter, Sparse convolution quadrature for time domain boundary integral formulations of the wave equation. IMA J. Numer. Anal. 29, 158–79 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. E. Hairer, G. Wanner, Stiff differential equations solved by Radau methods. J. Comput. Appl. Math. 111, 93–111 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Equations. Computational Mathematics, vol. 14 (Springer, Berlin, 2010)

    Google Scholar 

  43. J. Hesthaven, T. Warburton, Nodal high-order methods on unstructured grids—I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181, 186–221 (2002)

    MathSciNet  MATH  Google Scholar 

  44. R. Hiptmair, Coupling of finite elements and boundary elements in electromagnetic scattering. SIAM J. Numer. Anal. 41, 919–944 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. J. Hubert, E. Palencia, Vibration and Coupling of Continuous Systems (Springer, Berlin, 1989)

    Book  MATH  Google Scholar 

  46. M.A. Khayat, D.R. Wilton, Numerical evaluation of singular and near-singular potentials. IEEE Trans. Antennas Propag. 53, 3180–3190 (2005)

    Article  MATH  Google Scholar 

  47. A. Kirsch, F. Hettlich, The Mathematical Theory of Time-Harmonic Maxwell’s Equations. Applied Mathematical Sciences, vol. 190 (Springer, Cham, 2015)

    Google Scholar 

  48. W. Kress, S. Sauter, Numerical treatment of retarded boundary integral equations by sparse panel clustering. IMA J. Numer. Anal. 28, 162–185 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. A. Laliena, F.-J. Sayas, Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves. Numer. Math. 112, 637–678 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. U. Langer, M. Schanz, O. Steinbach, W. Wendland (eds.), Wave Propagation Problems Treated with Convolution Quadrature and BEM. Lecture Notes in Applied and Computational Mathematics, vol. 63 (Springer, Berlin, 2012)

    Google Scholar 

  51. R. Leis, Initial Boundary Value Problems in Mathematical Physics (Wiley, New York, 1988)

    Google Scholar 

  52. Y. Lin, D.S.Weile, Muklti-region finite-dfference time-domain (MR-FDTD) based on domain-otimal Green’s functions. IEEE Trans. Antennas Propag. 61, 2655–2663 (2013)

    Google Scholar 

  53. C. Lubich, On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations. Numer. Math. 67, 365–89 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  54. J. Lyness, D. Jespersen, Moderate degree symmetric quadrature rules for the triangle. J. Inst. Math. Appl. 15, 19–32 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  55. J. Mautz, R. Harrington, Electromagnetic scattering from a homogeneous material body of revolution. AEU Electron. Commun. 33, 71–80 (1979)

    Google Scholar 

  56. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations (Cambridge University Press, Cambridge, 2000)

    Google Scholar 

  57. P. Monk, Finite Element Methods for Maxwell’s Equations (Oxford University Press, Oxford, 2003)

    Book  MATH  Google Scholar 

  58. S. Mousavi, N. Sukumar, Generalized Duffy transformation for integrating vertex singularities. Comput. Mech. 45, 127–140 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  59. J.-C. Nédélec, Acoustic and Electromagnetic Equations. Applied Mathematical Sciences, vol. 144 (Springer, New York, 2001)

    Google Scholar 

  60. T. Needham, Visual Complex Analysis (Oxford University Press, Oxford, 1997)

    MATH  Google Scholar 

  61. G. Pisharody, D.S. Weile, Robust solution of time-domain integral equations using loop-tree decompositions and bandlimited extrapolation. IEEE Trans. Antennas Propag. 53, 2089–2098 (2005)

    Article  Google Scholar 

  62. S.M. Rao, D.R. Wilton, A.W. Glisson, Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propag. AP-30, 409–418 (1982)

    Article  Google Scholar 

  63. P. Raviart, J. Thomas, A mixed finite element method for 2nd order elliptic problems, in Mathematical Aspects of the Finite Element Method, ed. by A. Dold, B. Eckmann. Lecture Notes of Mathematics, vol. 606 (Springer, London, 1977)

    Google Scholar 

  64. S. Sauter, C. Schwab, Quadrature for hp-Galerkin BEM in \(\mathbb{R}^{3}\). Math. Comput. 78, 211–258 (1997)

    MathSciNet  MATH  Google Scholar 

  65. F. Sayas, Retarded potentials and time domain boundary integral equations: a road-map (2013). See http://www.math.udel.edu/~fjsayas/TDBIEclassnotes2012.pdf+

  66. M. Schanz, H. Antes, T. Ruberg, Convolution quadrature boundary element method for quasi-static visco- and poroelastic continua. Comput. Struct. 83, 673–684 (2005)

    Article  Google Scholar 

  67. B. Shanker, A. Ergin, M. Lu, E. Michielssen, Fast analysis of transient electromagnetic scattering phenomena using the multilevel plane wave time domain algorithm. IEEE Trans. Antennas Propag. 51, 628–641 (2003)

    Article  Google Scholar 

  68. SONATE web page. See http://imacs.polytechnique.fr/SONATE.htm (2015)

  69. J. Song, C. Lu, W. Chew, S. Lee, Fast Illinois solver code. IEEE Antennas Propag. Mag. 40, 27–34 (1998)

    Article  Google Scholar 

  70. A. Taflove, Computational Electrodynamics (Artech House, Boston, 1995)

    MATH  Google Scholar 

  71. I. Terrasse, Résolution mathématique et numérique des équations de Maxwell instationnaires par une méthode de potentiels retardés. Spécialité: Mathématiques Appliquées (Ecole Polytechnique, Paris, 1993)

    Google Scholar 

  72. X. Wang, D. Weile, Electromagnetic scattering from dispersive dielectric scatterers using the finite difference delay modeling method. IEEE Trans. Antennas Propag. 58, 1720–1730 (2010)

    Article  MathSciNet  Google Scholar 

  73. X. Wang, D. Weile, Implicit Runge-Kutta methods for the discretization of time domain integral equations. IEEE Trans. Antennas Propag. 59, 4651–4663 (2011)

    Article  MathSciNet  Google Scholar 

  74. X. Wang, R. Wildman, D. Weile, P. Monk, A finite difference delay modeling approach to the discretization of the time domain integral equations of electromagnetism. IEEE Trans. Antennas Propag. 56, 2442–2452 (2008)

    Article  MathSciNet  Google Scholar 

  75. J.A.C. Weideman, Numerical integration of periodic functions: a few examples. Am. Math. Mon. 109, 21–36 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  76. T. Weiland, Numerical solution of Maxwell’s equation for static, resonant and transient problems, in Studies in Electrical and Electronic Engineering 28B, ed. by T. Berceli. URSI International Symposium on Electromagnetic Theory Part B (Elsevier, New York, 1986), pp. 537–42

    Google Scholar 

  77. R.A. Wildman, D.S. Weile, An accurate broadband method of moments using higher order basis functions and tree-loop decomposition. IEEE Trans. Antennas Propag. 52, 2973–2984 (2003)

    Article  MathSciNet  Google Scholar 

  78. J. Wloka, Partial Differential Equations (Cambridge University Press, Cambridge, 1987)

    Book  MATH  Google Scholar 

  79. K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 16, 302–307 (1966)

    Google Scholar 

  80. A. Yilmaz, D.S. Weile, B. Shanker, J.M. Jin, E. Michielssen, Fast analysis of transient scattering in lossy media. IEEE Antennas Wirel. Propag. 1, 14–17 (2002)

    Article  Google Scholar 

  81. A.E. Yilmaz, D.S. Weile, J.M. Jin, E. Michielssen, A hierarchical fft algorithm (hil-fft) for the fast analysis of transient electromagnetic scattering phenomena. IEEE Trans. Antennas Propag. 50, 971–982 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge partial support for their research from NSF grant #DMS-1114889. The research of P.M. is also supported in part by a grant from AFOSR #FA9550-13-1-0199.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Monk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, J., Monk, P., Weile, D. (2015). Time Domain Integral Equation Methods in Computational Electromagnetism. In: Bermúdez de Castro, A., Valli, A. (eds) Computational Electromagnetism. Lecture Notes in Mathematics(), vol 2148. Springer, Cham. https://doi.org/10.1007/978-3-319-19306-9_3

Download citation

Publish with us

Policies and ethics