Maxwell’s Equations: Continuous and Discrete

Part of the Lecture Notes in Mathematics book series (LNM, volume 2148)

Abstract

This is an introduction to the spatial Galerkin discretization of Maxwell’s equations on bounded domains covering both modeling in the framework of exterior calculus, the construction of discrete differential forms, and a glimpse of a priori discretization error estimates. The presentation focuses on central ideas, skipping technical details for the sake of lucid presentation.

Keywords

Exterior Derivative Helmholtz Decomposition Impedance Boundary Condition Galerkin Discretization Shape Regularity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Ainsworth, J. Coyle, Hierarchic finite element bases on unstructured tetrahedral meshes. Int. J. Numer. Methods Eng. 58, 2103–2130 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    M. Ainsworth, G. Andriamaro, O. Davydov, A Bernstein-Bézier basis for arbitrary order Raviart-Thomas finite elements. Report NI12079-AMM, Newton Institute, Cambridge (2012)Google Scholar
  3. 3.
    C. Amrouche, C. Bernardi, M. Dauge, V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    D. Arnold, A. Logg, Periodic table of the finite elements. SIAM News 47(9) (2014)Google Scholar
  5. 5.
    D. Arnold, R. Falk, R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer. 15, 1–155 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    D. Arnold, D. Boffi, F. Bonizzoni, Finite element differential forms on curvilinear cubic meshes and their approximation properties. Preprint (2014). arXiv:1212.6559v4 [math.NA]Google Scholar
  7. 7.
    B. Auchmann, S. Kurz, de Rham currents in discrete electromagnetism. COMPEL 26, 743–757 (2007)Google Scholar
  8. 8.
    D. Baldomir, P. Hammond, Geometry of Electromagnetic Systems (Clarendon Press, Oxford, 1996)Google Scholar
  9. 9.
    M. Bergot, M. Duruflé, Approximation of \(H(\mathop{\mathrm{div}}\nolimits )\) with high-order optimal finite elements for pyramids, prisms and hexahedra. Commun. Comput. Phys. 14, 1372–1414 (2013)MathSciNetGoogle Scholar
  10. 10.
    M. Bergot, M. Duruflé, High-order optimal edge elements for pyramids, prisms and hexahedra. J. Comput. Phys. 232, 189–213 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics, vol. 44 (Springer, Heidelberg, 2013)Google Scholar
  12. 12.
    A. Bossavit, Computational Electromagnetism: Variational Formulation, Complementarity, Edge Elements. Electromagnetism Series, vol. 2 (Academic, San Diego, 1998)Google Scholar
  13. 13.
    A. Bossavit, On the geometry of electromagnetism I: affine space. J. Jpn. Soc. Appl. Electromagn. Mech. 6, 17–28 (1998)Google Scholar
  14. 14.
    A. Bossavit, On the geometry of electromagnetism II: geometrical objects. J. Jpn. Soc. Appl. Electromagn. Mech. 6, 114–123 (1998)Google Scholar
  15. 15.
    A. Bossavit, On the geometry of electromagnetism III: integration, Stokes’, Faraday’s law. J. Jpn. Soc. Appl. Electromagn. Mech. 6, 233–240 (1998)Google Scholar
  16. 16.
    A. Bossavit, On the geometry of electromagnetism IV: “Maxwell’s house”. J. Jpn. Soc. Appl. Electromagn. Mech. 6, 318–326 (1998)Google Scholar
  17. 17.
    A. Bossavit, On the Lorenz gauge. COMPEL 18, 323–336 (1999)CrossRefGoogle Scholar
  18. 18.
    A. Bossavit, Applied Differential Geometry: A Compendium. Unpublished Lecture Notes (2002)Google Scholar
  19. 19.
    A. Bossavit, Discretization of electromagnetic problems: the “generalized finite differences”, in Numerical Methods in Electromagnetics, ed. by W. Schilders, W. ter Maten. Handbook of Numerical Analysis, vol. XIII (Elsevier, Amsterdam, 2005), pp. 443–522Google Scholar
  20. 20.
    A. Buffa, R. Hiptmair, Galerkin boundary element methods for electromagnetic scattering, in Topics in Computational Wave Propagation: Direct and Inverse Problems, ed. by M. Ainsworth, P. Davis, D. Duncan, P. Martin, B. Rynne. Lecture Notes in Computational Science and Engineering, vol. 31 (Springer, Berlin, 2003), pp. 83–124Google Scholar
  21. 21.
    W. Burke, Applied Differential Geometry (Cambridge University Press, Cambridge, 1985)CrossRefGoogle Scholar
  22. 22.
    H. Cartan, Formes Différentielles (Hermann, Paris, 1967)Google Scholar
  23. 23.
    S.H. Christiansen, R. Winther, Smoothed projections in finite element exterior calculus. Math. Comput. 77, 813–829 (2008)MathSciNetCrossRefGoogle Scholar
  24. 24.
    P. Ciarlet, The Finite Element Method for Elliptic Problems. Studies in Mathematics and Its Applications, vol. 4 (North-Holland, Amsterdam, 1978)Google Scholar
  25. 25.
    P. Ciarlet Jr., J. Zou, Fully discrete finite element approaches for time-dependent Maxwell equations. Numer. Math. 82, 193–219 (1999)MathSciNetCrossRefGoogle Scholar
  26. 26.
    D. Colton, R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory. Applied Mathematical Sciences, vol. 93, 2nd edn. (Springer, Heidelberg, 2013)Google Scholar
  27. 27.
    M. Costabel, A. McIntosh, On Bogovskii and regularized Poincaré integral operators for de Rham complexes on Lipschitz domains. Math. Z. 265, 297–320 (2010)MathSciNetCrossRefGoogle Scholar
  28. 28.
    L. Evans, Partial Differential Equations. Graduate Studies in Mathematics, vol. 19 (American Mathematical Society, Providence, 1998)Google Scholar
  29. 29.
    R.S. Falk, R. Winther, Local bounded cochain projection. Preprint (2012). arXiv:1211.5893Google Scholar
  30. 30.
    R.S. Falk, R. Winther, Double complexes and local cochain projections. Numer. Methods Partial Differ. Equ. 31, 541–551 (2015)MathSciNetCrossRefGoogle Scholar
  31. 31.
    T. Frankel, The Geometry of Physics, 2nd edn. (Cambridge University Press, Cambridge, 2004)Google Scholar
  32. 32.
    R. Hiptmair, Canonical construction of finite elements. Math. Comput. 68, 1325–1346 (1999)MathSciNetCrossRefGoogle Scholar
  33. 33.
    R. Hiptmair, Discrete Hodge operators. Numer. Math. 90, 265–289 (2001)MathSciNetCrossRefGoogle Scholar
  34. 34.
    R. Hiptmair, Higher order Whitney forms, in Geometric Methods for Computational Electromagnetics, ed. by F. Teixeira. Progress in Electromagnetics Research, vol. 32 (EMW Publishing, Cambridge, 2001), pp. 271–299Google Scholar
  35. 35.
    R. Hiptmair, Finite elements in computational electromagnetism. Acta Numer. 11, 237–339 (2002)MathSciNetCrossRefGoogle Scholar
  36. 36.
    R. Hiptmair, C. Schwab, Natural boundary element methods for the electric field integral equation on polyhedra. SIAM J. Numer. Anal. 40, 66–86 (2002)MathSciNetCrossRefGoogle Scholar
  37. 37.
    S. Kurz, B. Auchmann, Differential forms and boundary integral equations for Maxwell-type problems, in Fast Boundary Element Methods in Engineering and Industrial Applications, ed. by U. Langer, M. Schanz, O. Steinbach, W.L. Wendland. Lecture Notes in Applied and Computational Mechanics, vol. 63 (Springer, Berlin/Heidelberg, 2012), pp. 1–62Google Scholar
  38. 38.
    S. Lang, Differential and Riemannian Manifolds. Graduate Texts in Mathematics, vol. 160 (Springer, New York, 1995)Google Scholar
  39. 39.
    J.M. Lee, Manifolds and Differential Geometry. Graduate Studies in Mathematics, vol. 107 (American Mathematical Society, Providence, 2009)Google Scholar
  40. 40.
    P. Monk, Finite Element Methods for Maxwell’s Equations (Clarendon Press, Oxford, 2003)CrossRefGoogle Scholar
  41. 41.
    N. Nigam, J. Phillips, High-order conforming finite elements on pyramids. IMA J. Numer. Anal. 32, 448–483 (2012)MathSciNetCrossRefGoogle Scholar
  42. 42.
    P. Oswald, Multilevel Finite Element Approximation. Teubner Skripten zur Numerik (B.G. Teubner, Stuttgart, 1994)Google Scholar
  43. 43.
    F. Rapetti, High-order edge elements on simplicial meshes. M2AN Math. Model. Numer. Anal. 41(6), 1001–1020 (2007)Google Scholar
  44. 44.
    M. Renardy, R.C. Rogers, An Introduction to Partial Differential Equations. Texts in Applied Mathematics, vol. 13, 2nd edn. (Springer, New York, 2004)Google Scholar
  45. 45.
    S. Sauter, C. Schwab, Boundary Element Methods. Springer Series in Computational Mathematics, vol. 39 (Springer, Heidelberg, 2010)Google Scholar
  46. 46.
    J. Schöberl, Commuting quasi-interpolation operators for mixed finite elements. Preprint ISC-01-10-MATH, Texas A&M University, College Station (2001)Google Scholar
  47. 47.
    T. Tarhasaari, L. Kettunen, A. Bossavit, Some realizations of a discrete Hodge: a reinterpretation of finite element techniques. IEEE Trans. Magn. 35, 1494–1497 (1999)CrossRefGoogle Scholar
  48. 48.
    S. Zaglmayr, High order finite element methods for electromagnetic field computation, Ph.D. thesis, Johannes Kepler Universität Linz, 2006Google Scholar
  49. 49.
    J. Zhao, Analysis of finite element approximation for time-dependent Maxwell problems. Math. Comput. 73, 1089–1105 (2004)CrossRefGoogle Scholar
  50. 50.
    L. Zhong, S. Shu, G. Wittum, J. Xu, Optimal error estimates for Nedelec edge elements for time-harmonic Maxwell’s equations. J. Comput. Math. 27, 563–572 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of MathematicsETH ZürichZürichSwitzerland

Personalised recommendations