Skip to main content

Abstract

The root of plant tissue culture began with the discovery of cell and further proceeded by cell theory proposed by Schleiden (a botanist) and Schwann (a zoologist) in 1838–1839. They suggested that cell is a structural and functional unit of all living organisms. They envisioned that cell has the ability to develop into a whole plant. This visualisation of Schleiden and Schwann put a clue before us the possibility of a cell to regenerate into a whole plant if suitable environment will be provided. Based on this assumption, in 1902 Gottlieb Haberlandt, a German plant physiologist working in Graz, Austria, was the first to culture isolated somatic cell of higher plants under in vitro conditions. The cell remained alive up to 1 month and increased in size and accumulation of starch in the cell; however, there was no cell division. Though he failed to observe any morphogenesis, because of his postulates, he has been regarded as the founder of plant tissue culture. The present chapter deals with some milestone discoveries that took place in plant tissue culture and also elaborates the contribution of the pioneer researchers in the development of in vitro biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah R, Cocking EC, Thompson JA (1986) Efficient plant regeneration from rice protoplasts through somatic embryogenesis. Bio/Technology 4:1087–1090

    Article  Google Scholar 

  • Ball E (1946) Development in sterile culture of stem tips and subjacent regions of Tropaeolum majus L. and of Lupinus albus L. Am J Bot 33:301–318

    Article  Google Scholar 

  • Bendich AJ, Filner P (1971) Uptake of exogenous DNA by pea seedlings and tobacco cells. Mutat Res 13:199–214

    Article  CAS  Google Scholar 

  • Bergmann L (1960) Growth and division of single cells of higher plants in vitro. J Gen Physiol 43:841–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brisson N, Paszkowski J, Penswick JR, Gronenborn B, Potrykus I, Hohn T (1984) Expression of a bacterial gene in plants by using a viral vector. Nature 310:511–514

    Article  CAS  Google Scholar 

  • Carlson PS, Smith HH, Dearing RD (1972) Parasexual interspecific plant hybridization. Proc Natl Acad Sci USA 69:2292–2294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaturvedi HC (1975) Propagation of Dioscorea floribunda from in vitro culture of single node stem segment. Curr Sci 41:439

    Google Scholar 

  • Chaturvedi HC (1979) Tissue culture of economic plants. In: Khoshoo TN, Nair PK (eds) Progress in plant research, vol 1. Today and Tomorrow’s Printers and Publishers, New Delhi, India, p 265

    Google Scholar 

  • Chaturvedi HC, Sharma M (1989) In vitro production of cloned plants of Jojoba (Simmondsia chinensis (Link) Schneider) through shoot proliferation in long term culture. Plant Sci 63:199–207

    Article  CAS  Google Scholar 

  • Chaturvedi HC, Singh SK, Sharma AK (2002) A method for regenerating viable and fertile citrus plants by tissue culture from explants. US Patent 6,485,975 B1, 26 Nov 2002, USA

    Google Scholar 

  • Chaturvedi HC, Agnihotri S, Sharma M, Sharma AK, Jain M, Chourasia A (2003) In vitro control of fasciation in proliferating nucellar embryos of Mangifera indica L. var Totapari red small for cloning. Indian J Exp Biol 41:1311–1316

    CAS  PubMed  Google Scholar 

  • Chaturvedi HC, Agnihotri S, Sharma S, Sharma AK, Jain M, Gupta P, Chourasia A, Kidwai NR (2004a) Induced nucellar embryogenesis in vitro for clonal multiplication of Mangifera indica L. var. Ambalavi: a dwarfing rootstock. Indian J Biotechnol 3:221–228

    Google Scholar 

  • Chaturvedi HC, Sharma M, Sharma AK, Jain M, Agha BQ, Gupta P (2004b) In vitro germplasm preservation through regenerative excised root culture for conservation of phytodiversity. Indian J Biotechnol 3:305–315

    Google Scholar 

  • Chilton MD, Drummond MH, Merlo KJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Article  CAS  PubMed  Google Scholar 

  • Cocking EC (1960) A method for the isolation of plant protoplasts and vacuoles. Nature 187:962–963

    Article  Google Scholar 

  • Cocking EC (1985) Protoplast from root hairs of crop plants. Bio/Technology 3:1104–1106

    Article  Google Scholar 

  • Duhamel du Monceau HL (1756) La physique des arbres ou ill est traite l’anatomie des plantes et de d’economie vegetale pour server d’introduction ai traite complet des bois et des forets. PHL Guerin France (Cited by Gautheret 1985)

    Google Scholar 

  • Ehlenfeldmt R, Helgeson JP (1987) Fertility of somatic hybrids from protoplast fusions of Solanum brevidens and S. tuberosum. From ovules of in vivo-grown emasculated flower buds of Citrus spp. Bull Theor Appl Genet 73:395–402

    Google Scholar 

  • Gautheret RJ (1934) Culture du tissus cambial. CR Hebd Seances Acad Sci 198:2195–2196

    Google Scholar 

  • Gautheret R (1939) Sur la possibilité de réaliser la culture indéfinie des tissues de tubercules de carotte. CR Soc Biol Paris 208:118–120

    Google Scholar 

  • Gheysen G, Dahese P, Van Montaque M, Schell J (1985) Genetic flux in plants. In: Hohn B, Dennis ES (eds) Advances in plant gene research, vol 2. Springer, Vienna, pp 11–47

    Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anther of Datura. Nature 204:497

    Article  Google Scholar 

  • Haberlandt G (1902) Kulturversuche mit isolierten Pflanzenzellen. Sitzungsber K Preuss Akad Wiss Wien. Math Naturwiss 111:69–92

    Google Scholar 

  • Hamill JD, Parr A, Robins RJ, Rhodes MJC (1986) Secondary products formation by cultures of Beta vulgaris and Nicotiana rustica transformed with Agrobacterium rhizogenes. Plant Cell Rep 5:111–114

    Article  CAS  PubMed  Google Scholar 

  • Hanning E (1904) Zur Physiologie pflanzenlicher embryonem I Uberdie Kultur von Cruciferen- Embryonen ausser-halb des embryosacks. Z Bot 62:45–80

    Google Scholar 

  • Hildebrandt AC, Riker AJ (1949) The influence of various carbon compounds on the growth of marigold, Paris-daisy, periwinkle, sunflower and tobacco tissue in vitro. Am J Bot 36:74–85

    Article  CAS  PubMed  Google Scholar 

  • http://www.csiro.au. Accessed 13 Mar 2015

  • http://www.insaindia.org. Accessed 10 Mar 2015

  • http://www.sivb.org/InVitroReport/41-3/lifetime.htm. Accessed 08 Apr 2015

  • Iida A, Seki M, Kamada M, Yamada Y, Morikawa H (1990) Gene delivery into cultured plant cells by DNA-coated gold particles accelerated by a pneumatic particle gun. Theor Appl Genet 80:813–816

    Article  CAS  PubMed  Google Scholar 

  • Kanta K (1960) Intraovarian pollination in Papaver rhoeas. Nature 188:683–684

    Article  Google Scholar 

  • Kasha KJ, Kao KN (1970) High frequency haploid production in barley (H. vulgare L.). Nature 225:874–887

    Article  CAS  PubMed  Google Scholar 

  • Kinsara A, Patnaik SN, Cocking EC, Power JB (1986) Somatic hybrid plants of Lycopersicon esculentum Mill. and Lycopersicon peruvianum Mill. J Plant Physiol 125:225–234

    Article  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High velocity microprojectile for delivering nucleic acids into living cells. Nature 327:70–73

    Article  CAS  Google Scholar 

  • Knop W (1865) Quantitative Untersuchungenüber den Ernährungsprozess Der Pflanzen. Landwirtsch Vers Stn 7:93–107

    Google Scholar 

  • Kotte W (1922) Culture experiments with isolated root tip. Posts Allgem Bot 2:413–434

    Google Scholar 

  • Kranz E, Lorz H (1993) In vitro fertilization with isolated, single gametes results in zygotic embryogenesis and fertile maize plants. Plant Cell 5:739–746

    Article  PubMed  PubMed Central  Google Scholar 

  • Krens FA, Molendijk L, Wullems GJ, Schilperoort RA (1982) In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296:72–74

    Article  CAS  Google Scholar 

  • Krikorian AD, Berquam DL (1969) Plant cell and tissue culture: the role of Haberlandt. Bot Rev 35:59–88

    Article  Google Scholar 

  • La Rue CD (1947) Growth and regeneration of the endosperm of maize in culture. Am J Bot 34:585–586

    Google Scholar 

  • Laimer M, Rücker W (eds) (2002) Plant tissue culture: 100 years since Gottlieb Haberlandt. Springer, Vienna

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation – a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Letham DS (1963) Zeatin, a factor inducing cell division isolated from Zea Mays. Life Sci 8:569–573

    Article  CAS  Google Scholar 

  • Liabach F (1925) Embryo culture for interspecific crosses in Linum spp. Z Bot 17:417–459

    Google Scholar 

  • Melchers G, Bergmann L (1959) Untersuchungen an Kulturen von haploiden Geweben von Antirrhinum majus. Ber Bot Ges 71:495

    Google Scholar 

  • Melchers G, Labib G (1974) Somatic hybridisation of plants by fusion protoplasts. Mol Gen Genet 135:277–294

    Article  Google Scholar 

  • Melchers G, Sacristán MD, Holder AA (1978) Somatic hybrid plants of potato and tomato regenerated from fused protoplast. Carlsberg Res Commun 43:203–218

    Article  Google Scholar 

  • Milanova VM, Zagorska NA (1990) Overcoming hybrid incompatibility between Nicotiana africana and N. tabacum and development of cytoplasmic male sterile tobacco forms. Plant Cell Tiss Org Cult 23:71–75

    Article  Google Scholar 

  • Miller C, Skoog F (1953) Chemical control of bud formation in tobacco stem segments. Am J Bot 40:768–773

    Article  CAS  Google Scholar 

  • Miller CO, Skoog F, Von Saltza MH, Strong FM (1955) Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc 77:1392

    Article  CAS  Google Scholar 

  • Mitra GC, Chaturvedi HC (1972) Embryoids and complete plants from unpollinated ovaries from ovules of in vivo grown emasculated flower buds of Citrus spp. Bull Torrey Bot Club 99:184

    Article  Google Scholar 

  • Morel GM (1960) Producing virus-free Cymbidiums. Am Orchid Soc Bull 29:495–497

    Google Scholar 

  • Morel G (1975) Meristem culture techniques for the long term storage of cultivated plants. In: Frankel OH, Hawkes JG (eds) Crops genetic resources for today and tomorrow. Cambridge University Press, London/New York

    Google Scholar 

  • Morel G, Martin C (1952) Guerison de Dahlias attaints d’une maladie a virus. Compt Rendus 235:1324–1325

    CAS  Google Scholar 

  • Morel G, Wetmore RH (1951) Tissue culture of monocotyledons. Am J Bot 38:138–140

    Article  CAS  Google Scholar 

  • Morgan TH (1901) Regeneration. MacMillan & Co Ltd, London, p 242

    Google Scholar 

  • Muir WH (1953) Cultural condition favoring the isolation and growth of single cell from higher plants in vitro. PhD thesis, University of Wisconsin

    Google Scholar 

  • Muir WH, Hildebrandt AC, Riker AJ (1954) Plant tissue cultures produced from single isolated cells. Science 119:877–887

    Article  Google Scholar 

  • Mullin RH, Schlegel DE (1976) Cold storage maintenance of strawberry meristem plantlets. Hort Sci 11:100

    Google Scholar 

  • Murashige T (1974) Plant propagation through tissue culture. Annu Rev Plant Physiol 25:135–166

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Newcomb EH (2001) Folke K. Skoog 1908–2001. Plant Mol Biol Rep 19:109–112

    Article  Google Scholar 

  • Nobécourt P (1939) Sur la pérennité et l’augmentation de volume des cultures de tissues végétaux. Compt Rendus Soc Biol Lyon 130:1270–1271

    Google Scholar 

  • Nomura K, Komamine A (1985) Identification and isolation of single cells that produce somatic embryos at a high frequency in a carrot suspension culture. Plant Physiol 79:988–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patnaik G, Wilson D, Cocking EC (1981) Importance of enzyme purification for single protoplast of Petunia parodii. Z Pflanzenphysiol 102:199–205

    Article  CAS  Google Scholar 

  • Pelletier G, Primard C, Vedel F, Chetri F, Remy R, Rouselle P, Renard M (1983) Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Mol Gen Genet 19:244–250

    Article  Google Scholar 

  • Potrykus I (1973) Isolation, fusion and culture of protoplasts. In: Villaneuva JR (ed) Yeast, mold and plant protoplast. Academic Press, New York, pp 319–332

    Google Scholar 

  • Rechinger C (1893) Studies on the limits of Teilbarkeit in the plant kingdom. Abh Zool Bot Ges (London) 43:310–334

    Google Scholar 

  • Reinert J (1958) The control of morphogenesis and induction of adventitious tissue culture from carrots. Planta 53:318–333

    Article  Google Scholar 

  • Reinhard E (1974) Biotransformations by plant tissue cultures. In: Street HE (ed) Tissue culture and plant science. Academic Press, London, pp 433–459

    Google Scholar 

  • Rhodes CA, Pierce DA, Mettler IJ, Mascarenhas D, Detmer JJ (1988) Genetically transformed maize plants from protoplasts. Science 8:204–207

    Article  Google Scholar 

  • Robbins WJ (1922) Cultivation of excised root tips and stem tips under sterile condition. Bot Gaz 73:274

    Article  Google Scholar 

  • Sautter C, Waldner H, Neuhaus-Url G, Galli A, Neuhaus G, Potrykus I (1991) Microtargeting: high efficiency gene transfer using a novel approach for the acceleration of micro-projectiles. Bio/Technology 9:1080–1085

    Article  CAS  PubMed  Google Scholar 

  • Schleiden MJ (1838) Contribution to phytogenesis. Millers Arch Anant Physiol 13:137–176

    Google Scholar 

  • Schwann T (1839) Microscopical researches into the accordance in the structure and growth of animals and plants. The Sydenham Society, London

    Google Scholar 

  • Seibert M (1976) Shoot initiation from carnation shoot apices frozen to −196 °C. Science 19:1178–1179

    Article  Google Scholar 

  • Shimamoto K, Terada R, Izawa T, Fujimoto H (1989) Fertile transgenic rice plants regenerated from transformed protoplast. Nature 338:274–276

    Article  CAS  Google Scholar 

  • Skoog F (1944) Growth and organ formation in tobacco tissue culture. Am J Bot 31:19–24

    Article  Google Scholar 

  • Skoog F, Miller CO (1957) Chemical regulation of growth and organ formation in plant tissue cultures in vitro. Symp Soc Exp Biol 11:118–131

    CAS  PubMed  Google Scholar 

  • Skoog F, Tsui C (1948) Chemical control of growth and bud formation in tobacco stem segments and callus cultured in vitro. Am J Bot 35:782–787

    Article  CAS  Google Scholar 

  • Skoog F, Tsui C (1951) Growth substances and the formation of buds in plant tissues. In: Skoog F (ed) Plant growth substances. University of Wisconsin Press, Madison, pp 263–285

    Google Scholar 

  • Spangenberg G, Freydl E, Osusky M, Nagel J, Potrykus I (1991) Organelle transfer by microfusion of defined protoplast-cytoplast pairs. Theor Appl Genet 81:477–486

    Article  CAS  PubMed  Google Scholar 

  • Steward FC, Caplin SM, Miller FK (1952) Investigation on growth and metabolism of plant cell. 1. New techniques for the investigation, metabolism, nutrition and growth in undifferentiated cells. Ann Bot 16:57–77

    Article  CAS  Google Scholar 

  • Steward FC, Mapes MO, Mears K (1958) Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am J Bot 45:705–708

    Article  Google Scholar 

  • Street HE, Lowe JS (1950) The carbohydrate nutrition of tomato roots. II. The mechanism of sucrose absorbation by excised root. Ann Bot Lond 14:307–329

    Article  CAS  Google Scholar 

  • Stroun M, Anker P, Charles P, Le Doux L (1967) Translocation of DNA of bacterial origin in Lycopersicon esculentum by ultracentrifugation in cesium chloride gradient. Nature 215:975–976

    Article  CAS  PubMed  Google Scholar 

  • Takebe I, Labib G, Melchers G (1971) Regeneration of whole plants from isolated mesophyll protoplasts of tobacco. Naturwissenschaften 58:318–320

    Article  Google Scholar 

  • Terada R, Kyozuka J, Nishibayashi S, Shimamoto K (1987) Plantlet regeneration from somatic hybrid of rice (Oryza sativa L.) and barnyard grass (Echinochloa oryzicola Vasing). Mol Gen Genet 210:39–43

    Article  Google Scholar 

  • Torrey JG (1966) The initiation of organised development in plants. Adv Morphog 5:39–91

    Article  CAS  PubMed  Google Scholar 

  • Trecul A (1853) Comments on the diameter growth of woody dicotyledonous plants. CRAS 34:241–244

    Google Scholar 

  • Vasil IK (2008) A history of plant biotechnology: from the cell theory of Schleiden and Schwann to biotech crops. Plant Cell Rep 27:1423–1440

    Article  CAS  PubMed  Google Scholar 

  • Vasil V, Hildebrandt AC (1965) Growth and tissue formation from single, isolated tobacco cells in microculture. Science 147:1454–1455

    Article  CAS  PubMed  Google Scholar 

  • Vasil IK, Hildebrandt AC (1966) Growth and chlorophyll production in plant callus tissues grown in vitro. Planta 68:69–72

    Article  CAS  PubMed  Google Scholar 

  • Watts JW, King JM (1984) A simple method for large-scale electrofusion and culture of plant protoplasts. Biosci Rep 4:335–342

    Article  CAS  PubMed  Google Scholar 

  • Went FW (1926) On growth-accelerating substances in the coleoptile of Avena sativa. Proc Kon Ned Akad Wet Wetensch 30:10–19

    Google Scholar 

  • White PR (1934) Potentially unlimited growth of excised tomato root-tips in a liquid medium. Plant Physiol 9:585–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White PR (1939) Potentially unlimited growth of excised plant callus in an artificial medium. Am J Bot 26:59–64

    Article  Google Scholar 

  • White PR, Braun AC (1942) A cancerous neoplasm of plants: autonomous bacteria-free crown-gall tissue. Cancer Res 2:597–657

    Google Scholar 

  • Wikipedia (2015) http://en.wikipedia.org/wiki/Panchanan_Maheshwari. Accessed 13 Mar 2015

  • Wikipedia (2015) http://fr.wikipedia.org/wiki/Roger_Jean_Gautheret. Accessed 13 Mar 2015

  • Withers LA, Cocking EC (1972) Fine structural studies on spontaneous and induced fusion of higher plant protoplasts. J Cell Sci 11:59–76

    CAS  PubMed  Google Scholar 

  • www.plantcell.org/cgi/doi/10.1105/tpc.108.058735. Accessed 13 Mar 2015

  • Zambryski P, Joos H, Gentello C, Leemans J, Van Montagu M, Schell J (1983) Ti-plasmid vector for introduction of DNA into plant cell without altering of their normal regeneration capacity. EMBOI J 2:2143–2150

    CAS  Google Scholar 

  • Zelcer A, Aviv D, Galun E (1978) Interspecific transfer of cytoplasmic male sterility by fusion between protoplast of normal Nicotiana sylvestris and X-ray irradiated protoplast of male sterile N. tabacum. Z Pflanzenphysiol 90:397–407

    Article  Google Scholar 

Download references

Acknowledgements

Vikas Yadav and Zishan Ahmad acknowledge the Non-NET University Fellowship funded by UGC India for providing research assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Shahzad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shahzad, A., Yadav, V., Ahmad, Z. (2016). Plant Tissue Culture: Profile of Pioneers. In: Shahzad, A., Sharma, S., Siddiqui, S. (eds) Biotechnological strategies for the conservation of medicinal and ornamental climbers. Springer, Cham. https://doi.org/10.1007/978-3-319-19288-8_5

Download citation

Publish with us

Policies and ethics