Skip to main content

Part of the book series: Space and Society ((SPSO))

Abstract

Scientific research is the foundation of design and concept development. The chapter addresses the next stage of design and planning; focusing and informing requirements for site selection with examples from Apollo and Mars Science Laboratory Curiosity rover programs; habitat structural systems, habitats and settlements concepts, and means to enable sustainable human presence beyond Earth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Thales Alenia Space Italia, Life Support and Habitability Expert.

  2. 2.

    NASA Johnson Space Center, Space Architect, Texas Architect #15161.

  3. 3.

    Rutgers University.

  4. 4.

    Universidad Technica Federico Santa Maria.

  5. 5.

    Further Reading: Book “Clementine Atlas of the Moon” by Bussey, Ben and Spudis, Paul, D. (Bussey and Spudis 2012); NASA [Moon] (2014). Solar System Exploration—Facts & Figures [Online] http://solarsystem.nasa.gov/planets/profile.cfm?Object=Moon; NASA [Mars] 2014. Solar System Exploration—Facts & Figures. [Online] http://solarsystem.nasa.gov/planets/profile.cfm?Object=Mars.

  6. 6.

    Further Reading about the curiosity mission: Curiosity: http://www.nasa.gov/mission_pages/msl/index.html. And: http://mars.nasa.gov/msl/mission/timeline/prelaunch/landingsiteselection/aboutgalecrater/

  7. 7.

    Book “Introduction to Space: The Science of Spaceflight” by Damon (1995, p. 225).

  8. 8.

    GAC was purchased by the Loral Systems Group.

  9. 9.

    Further Reading: SICSA lecture series: http://www.uh.edu/sicsa/library/media.

  10. 10.

    http://www.nasa.gov/feature/nasas-exploration-plans-include-living-off-the-land/.

  11. 11.

    Further Research: Young, A.: Lunar and Planetary Rovers. The Wheels of Apollo and the Quest for Mars. Springer-Praxis Books, Heidelberg (2007).

  12. 12.

    Further Research on the Athlete concept: https://www-robotics.jpl.nasa.gov/systems/systemVideo.cfm?System=11&Video=140.

  13. 13.

    Further information: Advanced Life Support Baseline Values and Assumptions Document , August 2004 NASA/CR—2004–208941 (Anthony 2004).

  14. 14.

    More information on the Oxygen Generator System can be found in the Educator Edition of NASA: http://www.nasa.gov/pdf/570242main_OxygenGen_CHEM_ED.pdf.

  15. 15.

    Further information on the Water Walls Life Support Architecture project can be found on the website of Astrotecture.

  16. 16.

    Forward Osmosis is a natural process in which the osmotic potential between two fluids of differing solute/solvent concentrations equalizes by the movement of solvent from the less concentrated solution to the more concentrated solution.

  17. 17.

    More information can be found in: Water Walls Life Support Architecture: System Overview by Marc M. Cohen, Renée L. Matossian, and Francois Lévy (ICES-2014-25), astrotecture.com.

  18. 18.

    From Haym Benaroya and Leonhard Bernold (Guest statement).

  19. 19.

    Micro-Ecological Life Support System Alternative (MELiSSA) http://www.esa.int/SPECIALS/Melissa/index.html.

  20. 20.

    Benaroya, H. 1993. Rigid tension structures for a lunar base, special issue: The applied mechanics of a lunar base. Applied Mechanics Reviews 46(5): 326–335. Benaroya, H. 1994. Reliability of structures for the moon. Structural Safety 15(1): 67–84. Benaroya, H., and M. Ettouney. 1992a. Framework for the evaluation of lunar base structural concepts. Aerospace Engineering 5(2): 187–198. Benaroya H., and M. Ettouney. 1992b. Design and construction considerations for a lunar outpost—utility of earth design codes. Aerospace Engineering 5(3): 261–273. Benaroya, H., L. Bernold, and K.-M. Chua. 2002. Engineering, design and construction of lunar bases. Journal of Aerospace Engineering 15(2): 33–45. Bernold L.E. 1994a. Compaction of lunar-type soil, ASCE. Journal of Aerospace Engineering 7(2): 175–187. Ettouney M., and H. Benaroya. 1992. Regolith mechanics, dynamics and foundations. Journal of Aerospace Engineering 5(2): 214–229. Ettouney M., Benaroya H., and Agassi, N. 1992. Cabled lunar structures. Journal of Aerospace Engineering 5(3): 297–310. Duke, M., and H. Benaroya. 1993. Lunar exploration and development, special issue: The applied mechanics of a lunar base. Applied Mechanics Reviews 46(5): 272–277

References

  • Anthony, J. Hanford, ed. 2004. NASA/CR-2004-208941. Advanced life support baseline values and assumptions document (BVAD).

    Google Scholar 

  • Bannova, Olga. 2007. Design considerations for exterior and interior configurations of surface habitat modules. Journal of the British Interplanetary Society (JBIS) 60(9): 331–338.

    Google Scholar 

  • Benaroya, Haym, and Bernold, Leonhard. 2008. Engineering of lunar bases. Acta Astronautica 62: 277–299.

    Article  Google Scholar 

  • Benaroya, Haym., Bernold, Leonhard, and Chua, K.-M. 2002. Engineering, design and construction of lunar bases. Journal of Aerospace Engineering 15(2): 33–45.

    Article  Google Scholar 

  • Bernold, Leonhard. 1991. Experimental studies on mechanics of lunar excavation, ASCE. Journal of Aerospace Engineering 4(1): 9–22.

    Google Scholar 

  • Bernold, Leonhard. 1994b. A cable based lunar transportation system. Journal of Aerospace Engineering (ASCE) 7(1): 1–16.

    Google Scholar 

  • Bernold Leonhard, 2013. Closed-cycle pneumatics for asteroid regolith mining. In Asteroids-prospective energy and material resources, ed. Badescu, 345–364. Berlin: Springer. ISBN: 978-3-642-39243-6. http://link.springer.com/book/10.1007/978-3-642-39244-3/page/1.

    Google Scholar 

  • Christiansen, Eric L. 2003. NASA [Shielding]. Meteoroid/Debris Shielding, NASA Johnson Space Center, Houston Texas, TP-2003-210788.

    Google Scholar 

  • Cohen, Marc M. 1996. Habitat distinctions: Planetary versus interplanetary architecture, AIAA-96-4467, AIAA space programs and technologies conference, September 24–26, Huntsville, AL, USA.

    Google Scholar 

  • Cohen, Marc M. 2000. Pressurized rover airlocks. NASA Ames Research Center, 2000-01-2389.

    Google Scholar 

  • Cohen, Marc M. 2009. From Apollo LM to Altair; design environments, infrastructure, missions and operations. AIAA space 2009 conference. Pasadena California, USA: AIAA 2009–6407.

    Google Scholar 

  • Cohen, Marc M. (2010). Trade and analysis study for a lunar lander habitable module configuration (AIAA 2010-6134). In 40th International Conference on Environmental Systems (ICES), Barcelona, Spain, 11–15. Reston, Virginia, USA: American Institute of Aeronautics and Astronautics.

    Google Scholar 

  • Cohen Marc M., Lévy, François, and Flynn, Michael T. 2014. Water walls life support architecture: System overview, 44th international conference on environmental systems, 13–17 July 2014, Tucson, Arizona, ICES-2014-25.

    Google Scholar 

  • Connolly, Jan, Daues, Kathy, Howard, Jr., Robert, and Toups, Larry. 2006. Definition and development of habitation readiness level (HRLs) for planetary surface habitats. Earth & Space 2006, 1–8.

    Google Scholar 

  • Connors, Mary M., Harrison, Albert A., and Akins, Faren R. 1999. Living aloft, human requirements for extended spaceflight. Washington, DC, USA: NASA, Ames Research Center. SP-483/ISBN: 1-4102-1983-6.

    Google Scholar 

  • Cortright Edgar M., ed. 1975. Apollo Expeditions to the Moon, Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington DC, SP-350.

    Google Scholar 

  • Crotts, Arlin. 2014. The new moon: Water, exploration, and future habitation. Cambridge: Cambridge University Press.

    Google Scholar 

  •  Damon, Thomas D. 1995. The science of spaceflight. Melbourne, Florida, USA: Krieger Publishing Company.

    Google Scholar 

  • den Haak, W. A. 1983. Spacelab scientific airlock. Proceedings of the first european symposium on space mechanisms and tribology, ESA SP-196, 47–50, October 12–14. Neuchatel, Switzerland.

    Google Scholar 

  • Department of the Army. 1963. Special Study of the Research and Development Effort Required to Provide a US Lunar Construction Capability, Office of the Chief of Engineers.

    Google Scholar 

  • Eckart, Peter. 1999. The lunar base handbook—an introduction to lunar base design, development and operations. New York: Mc-Graw Hill Space Technology Series.

    Google Scholar 

  • European Cooperation for Space Standardization, ECSS-E-ST-34C. 2008. Space engineering—environmental control and life support (ECLS).

    Google Scholar 

  • Haigneré, Jean-Pierre. 2009. Excerpt published in architecture for astronauts, Springer 2011, Interviewed by Sandra Häuplik-Meusburger, Paris, France.

    Google Scholar 

  • Häuplik-Meusburger, Sandra. 2011. Architecture for astronauts—an activity based approach. Wien/Heidelberg: Springer-Praxis Books.

    Google Scholar 

  • Häuplik-Meusburger, Sandra., and Özdemir, Kursad. 2012. In Deployable lunar habitation design in “Moon—Prospective Energy and Material Resources”, ed. V. Badescu, 469–502. Heidelberg, New-York: Springer.

    Google Scholar 

  • Häuplik-Meusburger, Sandra, Paterson, Carrie, Schubert, Daniel, and Zabel, Paul. 2014. Greenhouses and their humanizing synergies. Acta Astronautica Journal 96: 138–150. doi:10.1016/j.actaastro.2013.11.031.

    Google Scholar 

  • Howe, Scott A., and Sherwood, Brent. 2009. Out of this world. Library of flight. AIAA American Institute of Aeronautics & Astronautics.

    Google Scholar 

  • Howe, S.A., Spexarth, G., Toups, L., Howard, R., Rudisill, M., and Dorsey, J. 2010. Constellation architecture team: Lunar outpost ‘Scenario 12.1’ Habitation concept. In Proceedings of the twelfth biennial ASCE aerospace division international conference on engineering, science, construction, and operations in challenging environments (Earth & Space 2010), Honolulu, Hawaii, March 14–17.

    Google Scholar 

  • JPL[MSL]. 2007. MSL landing site selection, user’s guide to engineering constraints. Jet Propulsion Laboratory, California Institute of Technology, Version 4.5.

    Google Scholar 

  • Kennedy, K.J. 2009. The vernacular of space architecture. In Out of this world: The new field of space architecture, ch. 2, eds. A.S. Howe and B. Sherwood, 7–21. Reston: American Institute of Aeronautics and Astronautics.

    Google Scholar 

  • Kring, Jason, et al. 2000. Human performance in extreme environment: From the battlefield to the final frontier. [book auth.] Dennis A. Vincenzi, Mustapha Mouloua and Peter A. Hancock. [ed.] Psychology Press. Human performance, situation awareness and automation—Current research and trends. USA : HPSAA II, 2000, Vol. Volume II.

    Google Scholar 

  • Larson, Wiley J., and Pranke, Linda K.. 1999. Human spaceflight: Mission analysis and design. New York: The McGraw-Hill Companies.

    Google Scholar 

  • Lobascio, Cesare, et al. 2007. Plant bioregenerative life supports—the Italian CAB project. Journal of Plant Interactions 2(2): 125–134.

    Google Scholar 

  • NASA [Athlete]. 2010. ATHLETE (All-Terrain, Hex-Limbed, Extra-Terrestrial Explorer), NASA Facts, National Aeronautics and Space Administration. http://www.nasa.gov/pdf/390539main_Athlete%20Fact%20Sheet.pdf. Accessed May 2014.

  • NASA [Curiosity Fact]. 2014. Mars Science Laboratory/Curiosity. JPL 400-1537. http://www.jpl.nasa.gov/news/fact_sheets/mars-science-laboratory.pdf. Accessed July 2014.

  • NASA [ECLSS]. 2008. International Space Station. Environmental Control and Life Support System FS-2008-06-83-MSFC. http://www.nasa.gov/centers/marshall/pdf/104840main_eclss.pdf. Accessed Oct 2014.

  • NASA [In-Situ]. 2008. Ames Technology Capabilities and Facilities: In-Situ Resource Utilization. http://www.nasa.gov/centers/ames/research/technology-onepagers/in-situ_resource_Utiliza14.html. Accessed Mar 2008.

  • NASA [ISS]. 2010. Reference Guide to the International Space Station. Assembly Complete Edition, November 2010, National Aeronautics and Space Administration. NP-2010-09-682-HQ. https://www.nasa.gov/pdf/508318main_ISS_ref_guide_nov2010.pdf.

  • NASA [Mars]. 2014. Solar System Exploration—Facts & Figures. http://solarsystem.nasa.gov/planets/profile.cfm?Object=Mars. Accessed Aug 2014.

  • NASA [Mars JPL]. 2014. Mars Science Laboratory Curiosity Rover: Landing Site Selection. Retrieved from: http://mars.jpl.nasa.gov/msl/mission/timeline/prelaunch/landingsiteselection/. Accessed Jan 2015.

  • NASA [Moon]. 2014. Solar System Exploration—Facts & Figures. http://solarsystem.nasa.gov/planets/profile.cfm?Object=Moon. Accessed Aug 2014.

  • NASA [Skylab LL]. 1974. Lessons learned on the skylab program. Houston, Texas : NASA, Lyndon B. Johnson Space Center, USA, JSC-09096.

    Google Scholar 

  • NASA [Sustainability]. 2014. NASA’s Sustainability Portal. http://www.nasa.gov/agency/sustainability/index.html. Accessed Oct 2014.

  • Rapp, D. 2013. Use of extraterrestrial resources for human space missions to moon or mars. Springer-Praxis.

    Google Scholar 

  • Ruess, F., Schänzlin J., and Benaroya Haym. 2006. Structural design of a lunar habitat. Journal of Aerospace Engineering 19(3): 133–157.

    Article  Google Scholar 

  • Sherwood, Brent. 2002. Design organizational principles for earth orbital architecture. AIAA space architecture symposium, the world space congress, 2002, Houston, Texas.

    Google Scholar 

  • Smith, A. 1993. Mechanics of materials in lunar base design. In Applied mechanics of a lunar base, ed. H. Benaroya. Applied Mechanics Review 46(6): 268–271

    Google Scholar 

  • Taylor, Lawrence. A., and Taylor, D.-H. S. 1996. Location of a lunar base: A site selection strategy. In Engineering, construction and operations in space V, NASA Lyndon B, ed. Johnson, S. W. and Space Administration, Washington, D.C., 741–755. Houston, TX: Johnson Space Center.

    Google Scholar 

  • Viorel, Badescu, ed. 2012. MOON. Prospective energy and material resources. Heidelberg, New York: Springer.

    Google Scholar 

  • Williams, David Dr. R. 2007. Planetary fact sheet—metric. [Online] NASA Goddard Space Flight Center, 29 November 2007. [Cited: 17 January 2008.] http://nssdc.gsfc.nasa.gov/planetary/factsheet/index.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Häuplik-Meusburger .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Häuplik-Meusburger, S., Bannova, O. (2016). Habitation and Design Concepts. In: Space Architecture Education for Engineers and Architects. Space and Society. Springer, Cham. https://doi.org/10.1007/978-3-319-19279-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19279-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19278-9

  • Online ISBN: 978-3-319-19279-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics