Skip to main content

Discussion

  • Chapter
  • First Online:
Extracting Physics from Gravitational Waves

Part of the book series: Springer Theses ((Springer Theses))

  • 1038 Accesses

Abstract

We have developed TIGER, a general framework to search for deviations from GR by using signals from CBC events.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Blanchet, B.S. Sathyaprakash, Signal analysis of gravitational wave tails. Class. Quantum Gravity 11(11), 2807 (1994)

    Article  ADS  Google Scholar 

  2. L. Blanchet, B.S. Sathyaprakash, Detecting a tail effect in gravitational-wave experiments. Phys. Rev. Lett. 74, 1067–1070 (1995)

    Google Scholar 

  3. L. Blanchet et al., Gravitational-radiation damping of compact binary systems to second post-Newtonian order. Phys. Rev. Lett. 74, 3515–3518 (1995)

    Google Scholar 

  4. L.C. Stein, N. Yunes, Effective gravitational wave stress-energy tensor in alternative theories of gravity. Phys. Rev. D 83, 064038 (2010)

    Article  ADS  Google Scholar 

  5. K. Yagi et al., Post-Newtonian, quasicircular binary inspirals in quadratic modified gravity. Phys. Rev. D 85(6), 064022 (2012)

    Google Scholar 

  6. N. Yunes, L.C. Stein, Non-spinning black holes in alternative theories of gravity. Phys. Rev. D 83, 104002 (2011)

    Article  ADS  Google Scholar 

  7. W. Del Pozzo, J. Veitch, A. Vecchio, Testing general relativity using Bayesian model selection: applications to observations of gravitational waves from compact binary systems. Phys. Rev. D 83, 082002 (2011)

    Article  ADS  Google Scholar 

  8. C.M. Will, Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries. Phys. Rev. D 57, 2061–2068 (1998)

    Google Scholar 

  9. N. Yunes, F. Pretorius, Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-Einsteinian framework. Phys. Rev. D 80, 122003 (2009)

    Article  ADS  Google Scholar 

  10. N. Yunes, S.A. Hughes, Binary pulsar constraints on the parametrized post- Einsteinian framework. Phys. Rev. D 82, 082002 (2010)

    Article  ADS  Google Scholar 

  11. N. Yunes, R. O’Shaughnessy, B.J. Owen, S. Alexander, Testing gravitational parity violation with coincident gravitational waves and short gamma ray bursts. Phys. Rev. D 82, 064017 (2010)

    Article  ADS  Google Scholar 

  12. N. Yunes, F. Pretorius, D. Spergel, Constraining the evolutionary history of Newton’s constant with gravitational wave observations. Phys. Rev. D 81, 064018 (2010)

    Article  ADS  Google Scholar 

  13. S. Mirshekari, N. Yunes, C.M. Will, Constraining Lorentz-violating, modified dispersion relations with gravitational waves. Phys. Rev. D 85(2), 024041 (2012)

    Google Scholar 

  14. K. Chatziioannou, N. Yunes, N. Cornish, Model-independent test of general relativity: an extended post-Einsteinian framework with complete polarization content. Phys. Rev. D 86(2), 022004 (2012)

    Google Scholar 

  15. N. Cornish et al., Gravitational wave tests of general relativity with the parameterized post-Einsteinian framework. Phys. Rev. D 84(6), 062003 (2011)

    Google Scholar 

  16. A. Buonanno et al., Comparison of post-Newtonian templates for compact binary inspirals ignals in gravitational-wave detectors. Phys. Rev. D 80, 084043 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  17. T. Hinderer et al., Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral. Phys. Rev. D 81(12), 123016 (2010)

    Google Scholar 

  18. R. O’Shaughnessy, C. Kim, Pulsar binary birth rates with spin-opening angle correlations. Astrophys. J. 715, 230–241 (2010)

    Google Scholar 

  19. C. Van Den Broeck, A.S. Sengupta, Binary black hole spectroscopy. Class. Quantum Gravity 24(5), 1089 (2007)

    Article  MATH  ADS  Google Scholar 

  20. C. Van Den Broeck, A.S. Sengupta, Phenomenology of amplitude-corrected post-Newtonian gravitational waveforms for compact binary inspiral: I. Signal-to-noise ratios’. Class. Quantum Gravity 24(1), 155 (2007)

    Article  MATH  ADS  Google Scholar 

  21. P. Ajith et al., A phenomenological template family for black-hole coalescence waveforms. Class. Quantum Gravity 24(19), S689 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. P. Ajith et al., Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. Phys. Rev. Lett. 106(24), 241101 (2011)

    Google Scholar 

  23. P. Ajith et al., Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. Phys. Rev. Lett. 106, 241101 (2011)

    Article  ADS  Google Scholar 

  24. A. Buonanno, T. Damour, Effective one-body approach to general relativistic two-body dynamics. Phys. Rev. D 59, 084006 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  25. A. Buonanno, T. Damour, Transition from inspiral to plunge in binary black hole coalescences. Phys. Rev. D 62, 064015 (2000)

    Article  ADS  Google Scholar 

  26. T. Damour, P. Jaranowski, G. Schafer, Determination of the last stable orbit for circular general relativistic binaries at the third post-Newtonian approximation. Phys. Rev. D 62, 084011 (2000)

    Google Scholar 

  27. T. Damour, Coalescence of two spinning black holes: an effective one-body approach. Phys. Rev. D 64, 124013 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Buonanno, Y. Chen, T. Damour, Transition from inspiral to plunge in precessing binaries of spinning black holes. Phys. Rev. D 74, 104005 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  29. Y. Pan et al., Inspiral-merger-ringdown multipolar waveforms of nonspinning blackhole binaries using the effective-one-body formalism. Phys. Rev. D 84(12), 124052 (2011)

    Google Scholar 

  30. R. Sturani et al., Phenomenological gravitational waveforms from spinning coalescing binaries. ArXiv e-prints (2010), arXiv:1012.5172

  31. R Sturani et al., Complete phenomenological gravitational waveforms from spinning coalescing binaries. J. Phys.: Conf. Ser. 243(1) (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tjonnie G. F. Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, T.G.F. (2015). Discussion. In: Extracting Physics from Gravitational Waves. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-19273-4_9

Download citation

Publish with us

Policies and ethics