Skip to main content

Introduction

  • Chapter
  • First Online:
Extracting Physics from Gravitational Waves

Part of the book series: Springer Theses ((Springer Theses))

  • 1039 Accesses

Abstract

Einstein’s theory of GR is known for its mathematical elegance, but the theory also acquired great success through its agreement with experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The designations ‘massive gravity’ and ‘massive graviton’ originate from Blanchet et al. [43] where only the effect of a modified dispersion relation, or a wavelength dependent propagation speed has been taken into account. While it is attractive to ascribe such a modification to a graviton mass, a modification of the dispersion relation can be a more general effect, and moreover, endowing the graviton with a mass introduces additional deviations from GR than a mere modified dispersion relation. See e.g. the original work by Van Dam and Veltman [18] and the recent work by Rham et al. [19] for a thorough discussion of the issues related to massive gravity models.

References

  1. U.J. Le Verrier, Theorie DU mouvement de Mercure. Annales de l’Observatoire de Paris 5, 1 (1859)

    ADS  Google Scholar 

  2. A. Einstein, Die Grundlage der allgemeinen Relativitatstheorie. Annalen der Physik 354, 769–822 (1916)

    Article  ADS  Google Scholar 

  3. F.W. Dyson, A.S. Eddington, C. Davidson, A determination of the deflection of light by the Sun’s gravitational field, from observations made at the total eclipse of May 29, 1919’. English. Philos. Trans. R. Soc. Lond. Ser. A, Containing papers of a mathematical or physical character, 220, 291–333 (1920)

    Google Scholar 

  4. R.V. Pound, G.A. Rebka, Apparent weight of photons. Phys. Rev. Lett. 4, 337–341 (1960)

    Article  ADS  Google Scholar 

  5. I.I. Shapiro, Fourth test of general relativity. Phys. Rev. Lett. 13, 789–791 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  6. B. Bertotti, L. Iess, P. Tortora, A test of general relativity using radio links with the Cassini spacecraft. Nature 425.6956, 374–376 (2003)

    Article  Google Scholar 

  7. F. Zwicky, Nebulae as gravitational lenses. Phys. Rev. 51, 290–290 (1937)

    Article  ADS  Google Scholar 

  8. S.B. Lambert, C. Le Poncin-Lafitte, Improved determination of \(\gamma \) by VLBI. A&A 529(A70), A70 (2011)

    Article  ADS  Google Scholar 

  9. K. Nordtvedt, The fourth test of general relativity. Rep. Prog. Phys. 45.6, 631 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  10. F. Hofmann, J. Muller, L. Biskupek, Lunar laser ranging test of the Nordtvedt parameter and a possible variation in the gravitational constant. A&A 522, L5 (2010)

    Article  ADS  Google Scholar 

  11. J. Lense, H. Thirring, Uber den Einflu\(\beta \) der Eigenrotation der Zentralkorperauf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie. Physikalische Zeitschrift 19, 156 (1918)

    MATH  ADS  Google Scholar 

  12. C.W.F. Everitt et al., Gravity probe B: final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 221101 (2011)

    Article  ADS  Google Scholar 

  13. R.A. Hulse, J.H. Taylor, Discovery of a pulsar in a binary system. Astrophys. J. Lett. 195, L51–L53 (1975)

    Article  ADS  Google Scholar 

  14. M. Burgay et al., An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature 426.6966, 531–533 (2003)

    Article  Google Scholar 

  15. M. Kramer et al., Tests of general relativity from timing the double pulsar. Science 314(5796), 97–102 (2006)

    Article  ADS  Google Scholar 

  16. C. Misner, K. Thorne, J. Wheeler, Gravitation (WH Freeman & co, San Francisco, 1973)

    Google Scholar 

  17. N. Rosen, A bi-metric theory of gravitation. Gen. Relativ. Gravit. 4, 435–447 (1973)

    Article  MATH  ADS  Google Scholar 

  18. H. van Dam, M. Veltman, Massive and mass-less Yang-Mills and gravitational fields. Nucl. Phys. B 22.2, 397–411 (1970)

    ADS  Google Scholar 

  19. C. de Rham, G. Gabadadze, A.J. Tolley, Resummation of massive gravity. Phys. Rev. Lett. 106.23(231101), 231101 (2011)

    Article  Google Scholar 

  20. C. Brans, R.H. Dicke, Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925–935 (1961)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. R.V. Wagoner, D. Kalligas, Scalar-tensor theories and gravitational radiation. in Relativistic Gravitation and Gravitational Radiation, ed. by J.-A. Marck, J.-P. Lasota (Cambridge University Press, Cambridge, 1997), p. 433

    Google Scholar 

  22. M. Brunetti et al., Gravitational wave radiation from compact binary systems in the Jordan-Brans-Dicke theory. Phys. Rev. D 59.4(044027), 044027 (1999)

    Google Scholar 

  23. M. Maggiore, A. Nicolis, Detection strategies for scalar gravitational waves with interferometers and resonant spheres. Phys. Rev. D 62.2(024004), 024004 (2000)

    Google Scholar 

  24. M. Gasperini, On the response of gravitational antennas to dilatonic waves. Phys. Lett. B 470, 67–72 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. L. Wen, B.F. Schutz, Coherent network detection of gravitational waves: the redundancy veto. Class. Quantum Gravity 22, 1321 (2005)

    Article  ADS  Google Scholar 

  26. K. Hayama, A. Nishizawa, Model-independent test of gravity with a network of ground-based gravitational-wave detectors. Phys. Rev. D 87.6(062003), 062003 (2013)

    Google Scholar 

  27. K. Chatziioannou, N. Yunes, N. Cornish, Model-independent test of general relativity: an extended post-Einsteinian framework with complete polarization content. Phys. Rev. D 86.2(022004), 022004 (2012)

    Google Scholar 

  28. C. Van Den Broeck, A.S. Sengupta, Binary black hole spectroscopy. Class. Quantum Gravity 24.5, 1089 (2007)

    Article  ADS  Google Scholar 

  29. I. Kamaretsos et al., Black-hole hair loss: learning about binary progenitors from ringdown signals. Phys. Rev. D 85.2(024018), 024018 (2012)

    Google Scholar 

  30. F.D. Ryan, Gravitational waves from the inspiral of a compact object into a massive, axisymmetric body with arbitrary multipole moments. Phys. Rev. D 52, 5707–5718 (1995)

    Google Scholar 

  31. E. Poisson, Measuring black-hole parameters and testing general relativity using gravitational-wave data from space-based interferometers. Phys. Rev. D 54, 5939–5953 (1996)

    Article  ADS  Google Scholar 

  32. E. Berti, V. Cardoso, C.M. Will, Gravitational-wave spectroscopy of massive black holes with the spaceinterferometer LISA. Phys. Rev. D 73, 064030 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  33. S.A. Hughes, (Sort of) Testing relativity with extreme mass ratio inspirals. in AIP Conference Proceedings ed. by S.M. Merkowitz, J.C. Livas, vol. 873.1 (2006) pp. 233–240

    Google Scholar 

  34. L. Barack, C. Cutler, Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviationsin the geometry of massive black holes. Phys. Rev. D 75, 042003 (2007)

    Article  ADS  Google Scholar 

  35. J.R. Gair, C. Li, I. Mandel, Observable properties of orbits in exact bumpy spacetimes. Phys. Rev. D 77, 024035 (2008)

    Article  ADS  Google Scholar 

  36. C.M. Will, Testing scalar-tensor gravity with gravitational-wave observationsof inspiralling compact binaries. Phys. Rev. D 50, 6058–6067 (1994)

    Article  ADS  Google Scholar 

  37. T. Damour, G. Esposito-Farése, Gravitational-wave versus binary-pulsar tests of strong-field gravity. Phys. Rev. D 58, 042001 (1998)

    Article  ADS  Google Scholar 

  38. P.D. Scharre, C.M. Will, Testing scalar-tensor gravity using space gravitational wave interferometers. Phys. Rev. D 65, 042002 (2002)

    Article  ADS  Google Scholar 

  39. C.M. Will, N. Yunes, Testing alternative theories of gravity using LISA. Class. Quantum Gravity 21.18, 4367 (2004)

    Article  Google Scholar 

  40. E. Berti, A. Buonanno, C.M. Will, Estimating spinning binary parameters and testing alternative theories of gravity with LISA. Phys. Rev. D 71, 084025 (2005)

    Article  ADS  Google Scholar 

  41. E. Berti, A. Buonanno, C.M. Will, Testing general relativity and probing the merger history of massive black holes with LISA. Class. Quantum Gravity 22.18, S943 (2005)

    Article  Google Scholar 

  42. N. Yunes, F. Pretorius, D. Spergel, Constraining the evolutionary history of Newton’s constant with gravitational wave observations. Phys. Rev. D 81, 064018 (2010)

    Article  ADS  Google Scholar 

  43. L. Blanchet et al., Gravitational-radiation damping of compact binary systems to second post-newtonian order. Phys. Rev. Lett. 74, 3515–3518 (1995)

    Article  ADS  Google Scholar 

  44. C.M. Will, Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries. Phys. Rev. D 57, 2061–2068 (1998)

    Article  ADS  Google Scholar 

  45. K.G. Arun, C.M. Will, Bounding the mass of the graviton with gravitational waves: effect of higher harmonics in gravitational waveform templates. Class. Quantum Gravity 26.15, 155002 (2009)

    Article  MathSciNet  Google Scholar 

  46. A. Stavridis, C.M. Will, Bounding the mass of the graviton with gravitational waves: effect of spin precessions in massive black hole binaries. Phys. Rev. D 80, 044002 (2009)

    Article  ADS  Google Scholar 

  47. D. Keppel, P. Ajith, Constraining the mass of the graviton using coalescing black-hole binaries. Phys. Rev. D 82, 122001 (2010)

    Article  ADS  Google Scholar 

  48. W. Del Pozzo, J. Veitch, A. Vecchio, Testing general relativity using Bayesian model selection: applicationsto observations of gravitational waves from compact binary systems. Phys. Rev. D 83, 082002 (2011)

    Article  ADS  Google Scholar 

  49. E. Berti, J. Gair, A. Sesana, Graviton mass bounds from space-based gravitational wave observations of massive black hole populations. Phys. Rev. D 84.10(101501), 101501 (2011)

    Google Scholar 

  50. S. Alexander, L.S. Finn, N. Yunes, Gravitational-wave probe of effective quantum gravity. Phys. Rev. D 78, 066005 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  51. N. Yunes, L.S. Finn, Constraining effective quantum gravity with LISA. J. Phys. Conf. Ser. 154.1 (2009)

    Google Scholar 

  52. C.F. Sopuerta, N. Yunes, Extreme- and intermediate-mass ratio inspirals in dynamical Chern-Simons modified gravity. Phys. Rev. D 80, 064006 (2009)

    Article  ADS  Google Scholar 

  53. N. Yunes, R. O’Shaughnessy, B.J. Owen, S. Alexander, Testing gravitational parity violation with coincident gravitational waves and short gammaray bursts. Phys. Rev. D 82, 064017 (2010)

    Google Scholar 

  54. K.G. Arun et al., Testing post-Newtonian theory with gravitational wave observations. Class. Quantum Gravity 23.9, L37 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  55. K.G. Arun et al., Probing the nonlinear structure of general relativity with blackhole binaries. Phys. Rev. D 74, 024006 (2006)

    Article  ADS  Google Scholar 

  56. C.K. Mishra et al., Parametrized tests of Post-Newtonian theory using advanced LIGO and Einstein telescope. Phys. Rev. D 82, 064010 (2010)

    Article  ADS  Google Scholar 

  57. N. Yunes, F. Pretorius, Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-Einsteinian framework. Phys. Rev. D 80, 122003 (2009)

    Article  ADS  Google Scholar 

  58. L.C. Stein, N. Yunes, Effective gravitational wave stress-energy tensor in alternative theories of gravity. Phys. Rev. D 83, 064038 (2010)

    Article  ADS  Google Scholar 

  59. N. Yunes, S.A. Hughes, Binary pulsar constraints on the parametrized post-Einsteinian framework. Phys. Rev. D 82, 082002 (2010)

    Article  ADS  Google Scholar 

  60. N. Cornish et al., Gravitational wave tests of general relativity with the parameterized post-Einsteinian framework. Phys. Rev. D 84.6(062003), 062003 (2011)

    Google Scholar 

  61. S. Mirshekari, N. Yunes, C.M. Will, Constraining Lorentz-violating, modified dispersion relations with gravitational waves. Phys. Rev. D 85.2(024041), 024041 (2012)

    Google Scholar 

  62. K. Yagi et al., Post-Newtonian, quasicircular binary inspirals in quadratic modified gravity. Phys. Rev. D 85.6(064022), 064022 (2012)

    Google Scholar 

  63. N. Yunes, L.C. Stein, Non-spinning black holes in alternative theories of gravity. Phys. Rev. D 83, 104002 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tjonnie G. F. Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, T.G.F. (2015). Introduction. In: Extracting Physics from Gravitational Waves. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-19273-4_6

Download citation

Publish with us

Policies and ethics