Skip to main content

Cosmography

  • Chapter
  • First Online:
Extracting Physics from Gravitational Waves

Part of the book series: Springer Theses ((Springer Theses))

  • 1050 Accesses

Abstract

Distance measurements of stellar objects have always been of interest to astronomers and astrophysicists. Nowadays, scientists are interested in distances to these objects because of the potential to inform us about physics on cosmological scales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Turon, X. Luri, E. Masana, Building the cosmic distance scale: from Hipparcos to Gaia. Astrophys. Space Sci. 71 (2012)

    Google Scholar 

  2. M.H. Pinsonneault, D.M. Terndrup, R.B.H.J.R. Stauffer, The distances to open clusters from main-sequence fitting. I. New models and a comparison with the properties of the Hyades eclipsing binary VB 22. Astrophys. J. 598(1), 588 (2003)

    Article  ADS  Google Scholar 

  3. M.H. Pinsonneault, D.M. Terndrup, R.B.H.J.R. Stauffer, The distances to open clusters as derived from main-sequence fitting. II. Construction of empirically calibrated isochrones. Astrophys. J. 600(2), 946 (2004)

    Google Scholar 

  4. D. An et al., The distances to open clusters from main-sequence fitting. III. Improved accuracy with empirically calibrated isochrones. Astrophys. J. 655(1), 233 (2007)

    Article  ADS  Google Scholar 

  5. H.S. Leavitt, 1777 variables in the magellanic clouds. Ann. Harvard College Obs. 60, 87–108 (1908)

    Google Scholar 

  6. S.A. Zhevakin, Physical basis of the pulsation theory of variable stars. ARA&A 1, 367 (1963)

    Article  ADS  Google Scholar 

  7. W.L. Freedman et al., Final results from the Hubble space telescope key project to measure the Hubble constant. Astrophys. J. 553(1), 47 (2001)

    Article  ADS  Google Scholar 

  8. W.L. Freedman et al., Final results from the Hubble space telescope key project to measure the Hubble constant. Astrophys. J. 553(1), 47 (2001)

    Article  ADS  Google Scholar 

  9. K.A. Postnov, L.R. Yungelson, The evolution of compact binary star systems. Rev. Relat. 9, 6 (2006)

    Google Scholar 

  10. M. Hamuy et al., The morphology of type IA supernovae light curves. Astron. J. 112, 2438 (1996)

    Article  ADS  Google Scholar 

  11. S. Perlmutter et al., Measurements of and from 42 high-redshift supernovae. Astrophys. J. 517(2), 565 (1999)

    Article  ADS  Google Scholar 

  12. A.G. Riess et al., Observational evidence from supernovae for an accelerating universeand a cosmological constant. Astron. J. 116(3), 1009 (1998)

    Article  ADS  Google Scholar 

  13. B.P. Schmidt et al., The high-Z supernova search: measuring cosmic deceleration and global curvature of the universe using type ia supernovae. Astrophys. J. 507(1), 46 (1998)

    Article  ADS  Google Scholar 

  14. P.S. Drell, T.J. Loredo, I. Wasserman, Type IA supernovae, evolution, and the cosmological constant. Astrophys. J. 530, 593–617 (2000)

    Google Scholar 

  15. J.G. Cohen et al., Caltech faint galaxy redshift survey. X. A redshift survey in the region of the Hubble deep field north. ApJ 538, 29–52 (2000)

    Google Scholar 

  16. A. Abrahamse et al., Characterizing and propagating modeling uncertainties in photometrically derived redshift distributions. Astrophys. J. 734(36), 36 (2011)

    Article  ADS  Google Scholar 

  17. D.W. Hogg et al., A blind test of photometric redshift prediction. Astron. J. 115, 1418–1422 (1998)

    Google Scholar 

  18. A. Fern\(\acute{a}\)ndez-Soto et al., On the compared accuracy and reliability of spectroscopic and photometric redshift measurements. ApJS 135, 41–61 (2001)

    Google Scholar 

  19. J. Silk, Cosmic black-body radiation and galaxy formation. ApJ 151, 459 (1968)

    Article  ADS  Google Scholar 

  20. P.J.E. Peebles, J.T. Yu, Primeval adiabatic perturbation in an expanding universe. Astrophys. J. 162, 815 (1970)

    Article  ADS  Google Scholar 

  21. C. Blake, K. Glazebrook, Probing dark energy using baryonic oscillations in the galaxy power spectrum as a cosmological ruler. Astrophys. J. 594(2), 665 (2003)

    Article  ADS  Google Scholar 

  22. W. Hu, Z. Haiman, Redshifting rings of power. Phys. Rev. D 68, 063004 (2003)

    Article  ADS  Google Scholar 

  23. H.-J. Seo, D.J. Eisenstein, Probing dark energy with baryonic acoustic oscillations from futurelarge galaxy redshift surveys. Astrophys. J. 598(2), 720 (2003)

    Article  ADS  Google Scholar 

  24. P.J.E. Peebles, Principles of Physical Cosmology, ed. by P.J.E. Peebles, 1993

    Google Scholar 

  25. F. Zwicky. Nebulae as gravitational lenses. Phys. Rev. 51, 290–290 (1937)

    Google Scholar 

  26. M. Bartelmann. Gravitational Lensing. ArXiv e-prints (2010), arXiv:1010.3829

  27. S. Refsdal, On the possibility of determining Hubbles parameter and the masses of galaxies from the gravitational lens effect. Mon. Not. Royal Astron. Soc. 128, 307 (1964)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. R. Fadely et al., Improved constraints on the gravitational lens Q0957+561. II. Strong lensing. ApJS 711, 246–267 (2010)

    Google Scholar 

  29. S.H. Suyu et al. Dissecting the gravitational lens B1608+656. II. Precision measurements of the Hubble constant, spatial curvature, and the dark energy equation of state. Astrophys. J. 711, 201–221 (2010)

    Google Scholar 

  30. R. Massey et al., COSMOS: three-dimensional weak lensing and the growth of structure. Astrophys. J. Suppl. Ser. 172, 239–253 (2007)

    Google Scholar 

  31. L. Fu et al., Very weak lensing in the CFHTLS wide: cosmology from cosmic shearin the linear regime. Astron. Astrophys. 479, 9–25 (2008)

    Google Scholar 

  32. T. Schrabback et al., Evidence of the accelerated expansion of the universe from weak lensing tomography with COSMOS. Astron. Astrophys. 516(A63), A63 (2010)

    Article  ADS  Google Scholar 

  33. B.F. Schutz, Determining the Hubble constant from gravitational wave observations. Nature 323, 310 (1986)

    Article  ADS  Google Scholar 

  34. M. Bartelmann, P. Schneider, Weak gravitational lensing. Phys. Rep. 340(4-5), 291–472 (2001)

    Google Scholar 

  35. S. Nissanke et al., Exploring short gamma-ray bursts as gravitational-wave standard sirens. Astrophys. J. 725, 496–541 (2010)

    Google Scholar 

  36. C. Cutler, E.E. Flanagan, Gravitational waves from merging compact binaries: how accurately can one extract the binarys parameters from the inspiral waveform? Phys. Rev. D 49, 2658–2697 (1984)

    Google Scholar 

  37. E. Nakar. Short-hard gamma-ray bursts. Phys. Rep. 442, 166–236 (2007)

    Google Scholar 

  38. A.A. Abdo et al., Fermi observations of high-energy gamma-ray emission from GRB 080916C. Science 323, 1688 (2009)

    Google Scholar 

  39. E. Nakar, A. Gal-Yam, D.B. Fox. The local rate and the progenitor life times of short-hard gamma-ray bursts: synthesis and predictions for the laser interferometer gravitational-wave observatory. Astrophys.J. 650, 281–290 (2006)

    Google Scholar 

  40. L. Rezzolla et al., The missing link: merging neutron stars naturally produce jet like structures and can power short gamma-ray bursts. Astrophys. J. Lett. 732(1), L6 (2011)

    Article  ADS  Google Scholar 

  41. B.S. Sathyaprakash, B.F. Schutz, C. Van Den Broeck, Cosmography with the Einstein telescope. Class. Quantum Gravity 27(21), 215006 (2010)

    Article  ADS  Google Scholar 

  42. W. Zhao et al., Determination of dark energy by the Einstein telescope: comparing with CMB, BAO, and SNIa observations. Phys. Rev. D 83(2), 023005 (2011)

    Article  ADS  Google Scholar 

  43. D. Tsang et al. Resonant Shattering of Neutron Star Crusts. Physical Review Letters 108.1, 011102 (2012), p. 011102

    Google Scholar 

  44. K. Belczynski et al., The lowest-mass stellar black holes: catastrophic death of neutron stars in gamma-ray bursts. Astrophys. J. Lett. 680, L129–L132 (2008)

    Google Scholar 

  45. D.A. Frail et al., Beaming in gamma-ray bursts: evidence for a standard energy reservoir. ApJ 562, L55–L58 (2001)

    Google Scholar 

  46. W. Del Pozzo, Inference of cosmological parameters from gravitational waves: applications to second generation interferometers. Phys. Rev. D 86(4), 043011 (2012)

    Google Scholar 

  47. J.S. Bloom, S.R. Kulkarni, S.G. Djorgovski, The observed offset distribution of gamma-ray bursts from their host galaxies: a robust clue to the nature of the progenitors. AJ 123, 1111–1148 (2002)

    Google Scholar 

  48. T. Bulik, K. Belczynski, W. Zbijewsk, Distribution of compact object mergers around galaxies. MNRAS 309, 629–635 (1999)

    Google Scholar 

  49. Z. Ivezic et al., LSST: from science drivers to reference design and anticipated data products. ArXiv e-prints (2008), arXiv:0805.2366

  50. D. Markovic, Possibility of determining cosmological parameters from measurements of gravitational waves emitted by coalescing, compact binaries. Phys. Rev. D 48, 4738–4756 (1993)

    Google Scholar 

  51. F. Özel et al., On the mass distribution and birth masses of neutron stars. ApJ 757, 55 (2012)

    Google Scholar 

  52. R. Valentim, E. Rangel, J.E. Horvath, On the mass distribution of neutron stars. MNRAS 414, 1427–1431 (2011)

    Google Scholar 

  53. J. Schwab, P. Podsiadlowski, S. Rappaport, Further evidence for the bimodal distribution of neutron-star masses. ApJ 719, 722–727 (2010)

    Google Scholar 

  54. D.F. Chernoff, L.S. Finn, Gravitational radiation, inspiraling binaries, and cosmology. Astrophys. J. Lett. 411, L5–L8 (1993)

    Google Scholar 

  55. L.S. Finn, Binary inspiral, gravitational radiation, and cosmology. Phys. Rev. D 53, 2878–2894 (1996)

    Google Scholar 

  56. S.R. Taylor, J.R. Gair, I. Mandel, Cosmology using advanced gravitational wave detectors alone. Phys. Rev. D 85, 023535 (2012)

    Article  ADS  Google Scholar 

  57. C. Messenger, J. Read, Measuring a cosmological distance-redshift relationship using only gravitational wave observations of binary neutron star coalescences. Phys. Rev. Lett. 108, 091101 (2012)

    Article  ADS  Google Scholar 

  58. F. Özel, Soft equations of state for neutron-star matter ruled out by EXO0748-676. Nature 441, 1115–1117 (2006)

    Google Scholar 

  59. D.A. Leahy, S.M. Morsink, C. Cadeau, Limits on mass and radius for the millisecond-period X-ray pulsar SAX J1808.4-3658. ApJ 672, 1119–1126 (2008)

    Google Scholar 

  60. F. Özel, T. Güver, D. Psaltis, The mass and radius of the neutron star in EXO 1745-248. ApJ 693, 1775–1779 (2009)

    Google Scholar 

  61. D.A. Leahy et al., Constraints on the properties of the neutron star XTE J1814-338 from pulse-shape models. ApJ 691, 1235–1242 (2009)

    Google Scholar 

  62. E.E. Flanagan, T. Hinderer, Constraining neutron-star tidal Love numbers with gravitational-wave detectors. Phys. Rev. D 77, 021502 (2008)

    Article  ADS  Google Scholar 

  63. T. Hinderer et al., Tidal deformability of neutron stars with realistic equations of state and their gravitational wave signatures in binary inspiral. Phys. Rev. D 81(12), 123016 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tjonnie G. F. Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, T.G.F. (2015). Cosmography. In: Extracting Physics from Gravitational Waves. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-19273-4_11

Download citation

Publish with us

Policies and ethics