Training in Realistic Virtual Environments: Impact on User Performance in a Motor Imagery-Based Brain–Computer Interface

  • Leandro da Silva-Sauer
  • Luis Valero-Aguayo
  • Francisco Velasco-ÁlvarezEmail author
  • Sergio Varona-Moya
  • Ricardo Ron-Angevin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9094)


A brain–computer interface (BCI) is a system that enables people to control an external device by means of their brain activity, without the need of performing muscular activity. BCI systems are normally first tested on a controlled environment before being used in a real, daily scenario. While this is due to security reasons, the conditions that BCI systems users will eventually face in their usual environment may affect their performance in an unforeseen way. In this paper, we try to bridge this gap by presenting a trained BCI user a virtual environment that includes realistic distracting stimuli and testing whether the complexity or the type of such stimuli affects user performance. 11 subjects navigated two virtual environments: a static park and the same one with visual and auditory stimuli simulating typical distractors from a real park. No significant differences were found when using a realistic environment; in other words, the presence of different distracting stimuli did not worsen user performance.


Brain-Computer Interface (BCI) Virtual Environment (VE) Distraction Visual stimuli Auditory stimuli 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Neuper, C., Scherer, R., Wriessnegger, S., Pfurtscheller, G.: Motor imagery and action observation: Modulation of sensorimotor brain rhythms during mental control of a brain-computer interface. Clinical Neurophysiology 120(2), 239–247 (2009). doi: 10.1016/j.clinph.2008.11.015 CrossRefGoogle Scholar
  2. 2.
    McCane, L.M., Sellers, E.W., Mcfarland, D.J., Mak, J.N., Carmack, C.S., Zeitlin, D., et al.: Brain-computer interface (BCI) evaluation in people with amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 15(3–4), 207–215 (2014). doi: 10.3109/21678421.2013.865750 CrossRefGoogle Scholar
  3. 3.
    Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clinical Neurophysiology 113(6), 767–791 (2002)CrossRefGoogle Scholar
  4. 4.
    Leamy, D. J., Kocijan, J., Domijan, K., Duffin, J., Roche, R. A., Commins, S. R., et al.: An exploration of EEG features during recovery following stroke - implications for BCI-mediated neurorehabilitation therapy. Journal of NeuroEngineering and Rehabilitation 11(1) (2014). doi: 10.1186/1743-0003-11-9
  5. 5.
    Lotte, F., Larrue, F., & Mühl, C.: Flaws in current human training protocols for spontaneous brain-computer interfaces: Lessons learned from instructional design. Frontiers in Human Neuroscience, (SEP) (2013). doi: 10.3389/fnhum.2013.00568
  6. 6.
    Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H., Pfurtscheller, G.: Brain-computer communication: Motivation, aim, and impact of exploring a virtual apartment. IEEE Transactions on Neural Systems and Rehabilitation Engineering 15(4), 473–482 (2007)CrossRefGoogle Scholar
  7. 7.
    Ron-Angevin, R., Díaz-Estrella, A.: Brain-computer interface: Changes in performance using virtual reality techniques. Neuroscience Letters 449(2), 123–127 (2009)CrossRefGoogle Scholar
  8. 8.
    Velasco-Álvarez, F., Ron-Angevin, R., da Silva-Sauer, L., Sancha-Ros, S.: Audio-cued motor imagery-based brain–computer interface: Navigation through virtual and real environments. Neurocomputing 121, 89–98 (2013). doi: 10.1016/j.neucom.2012.11.038 CrossRefGoogle Scholar
  9. 9.
    Kübler, A., Neumann, N., Kaiser, J., Kotchoubey, B., Hinterberger, T., Birbaumer, N.P.: Brain-computer communication: Self-regulation of slow cortical potentials for verbal communication. Archives of Physical Medicine and Rehabilitation 82(11), 1533–1539 (2001)CrossRefGoogle Scholar
  10. 10.
    Guger, C., Schlögl, A., Neuper, C., Walterspacher, D., Strain, T., Pfurtscheller, G.: Rapid prototyping of an EEG-based brain-computer interface (BCI). IEEE Transactions on Neural Systems and Rehabilitation Engineering 9(1), 49–58 (2001)CrossRefGoogle Scholar
  11. 11.
    Guger, C., Edlinger, G., Harkam, W., Niedermayer, I., Pfurtscheller, G.: How many people are able to operate an EEG-based brain-computer interface (BCI)? IEEE Transactions on Neural Systems and Rehabilitation Engineering 11(2), 145–147 (2003)CrossRefGoogle Scholar
  12. 12.
    Foldes, S.T., & Taylor, D.M.: Speaking and cognitive distractions during EEG-based brain control of a virtual neuroprosthesis-arm. Journal of NeuroEngineering and Rehabilitation 10(1) (2013). doi: 10.1186/1743-0003-10-116
  13. 13.
    Friedrich, E.V.C., Scherer, R., Sonnleitner, K., Neuper, C.: Impact of auditory distraction on user performance in a brain-computer interface driven by different mental tasks. Clinical Neurophysiology 122(10), 2003–2009 (2011). doi: 10.1016/j.clinph.2011.03.019 Google Scholar
  14. 14.
    Kleih, S.C., Nijboer, F., Halder, S., Kübler, A.: Motivation modulates the P300 amplitude during brain-computer interface use. Clinical Neurophysiology 121(7), 1023–1031 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Leandro da Silva-Sauer
    • 1
  • Luis Valero-Aguayo
    • 2
  • Francisco Velasco-Álvarez
    • 1
    Email author
  • Sergio Varona-Moya
    • 1
  • Ricardo Ron-Angevin
    • 1
  1. 1.Departamento de Tecnología ElectrónicaUniversidad de MálagaMálagaSpain
  2. 2.Departamento de PersonalidadUniversidad de Málaga, Evaluación y Tratamiento PsicológicoMálagaSpain

Personalised recommendations