Skip to main content

A Neural-Network-Based Robust Observer for Simultaneous Unknown Input Decoupling and Fault Estimation

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9094))

Included in the following conference series:

Abstract

The paper deals with the problem of neural-network based on robust unknown input observer design for the fault diagnosis. Authors review the recent development in the area of robust observers for non-linear discrete-time systems and propose less restrictive procedure for design of the \({\mathcal {H}_\infty }\) observer. The approach guaranties simultaneously the unknown input decoupling and the fault estimation. The paper presents an unknown input observer design that reduces to a set of linear matrix inequalities. The final part of the paper presents an illustrative example devoted to fault diagnosis of the wind turbine.

The work was financed as a research project with the science funds with the kind support of the National Science Centre in Poland

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bendtsen, J.D., Trangbk, K.: Robust quasi-lpv control based on neural state space models. IEEE Transactions on Neural Networks, 355–368 (2002)

    Google Scholar 

  2. Bououden, S., Chadli, M., Filali, S., El Hajjaji, A.: Fuzzy model based multivariable predictive control of a variable speed wind turbine: \(\{\)LMI\(\}\) approach. Renewable Energy 37(1), 434–439 (2012)

    Article  Google Scholar 

  3. Chadli, M., Karimi, H.R.: Robust observer design for unknown inputs takagi-sugeno models. IEEE Transactions on Fuzzy Systems 21(1), 158–164 (2013)

    Article  Google Scholar 

  4. De Oca, S., Puig, V., Witczak, M., Dziekan, L.: Fault-tolerant control strategy for actuator faults using lpv techniques: application to a two degree of freedom helicopter. International Journal of Applied Mathematics and Computer Science 22(1), 161–171 (2012)

    MATH  MathSciNet  Google Scholar 

  5. de Oliveira, M.C., Bernussou, J., Geromel, J.C.: A new discrete-time robust stability condition. Systems and Control Letters 37(4), 261–265 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Guerra, T.M., Kruszewski, A., Lauber, J.: Discrete Tagaki-Sugeno models for control: Where are we? Annual Reviews in Control 33(1), 37–47 (2009)

    Article  Google Scholar 

  7. Iserman, R.: Fault Diagnosis Applications: Model Based Condition Monitoring, Actuators, Drives, Machinery, Plants, Sensors, and Fault-tolerant Systems. Springer-Verlag, Berlin (2011)

    Book  Google Scholar 

  8. Lu, S., Basar, T.: Robust nonlinear system identification using neural-network models. IEEE Transactions on Neural Networks 9(3), 407–429 (1998)

    Article  Google Scholar 

  9. Mrugalski, M.: An unscented kalman filter in designing dynamic gmdh neural networks for robust fault detection. International Journal of Applied Mathematics and Computer Science 23(1), 157–169 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Takagi, T., Sugeno, M.: Fuzzy identification of systems and its applications to modelling and control. IEEE Trans. Systems, Man and Cybernetics 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  11. Tuan, H.D., Apkarian, P., Narikiyo, T., Yamamoto, Y.: Parameterized linear matrix inequality techniques in fuzzy control system design. IEEE Transactions on Fuzzy Systems 9(2), 324–332 (2001)

    Article  Google Scholar 

  12. Varga, A., Ossmann, D.: \(\{\)LPV\(\}\) model-based robust diagnosis of flight actuator faults. Control Engineering Practice 31, 135–147 (2014)

    Article  Google Scholar 

  13. Veluvolu, K.C., Kim, M.Y., Lee, D.: Nonlinear sliding mode high-gain observers for fault estimation. International Journal of Systems Science 42(7), 1065–1074 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Wang, H.O., Tanaka, K., Griffin, M.F.: An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Transactions on Fuzzy Systems 4(1), 14–23 (1996)

    Article  Google Scholar 

  15. Witczak, M.: Fault Diagnosis and Fault-Tolerant Control Strategies for Non-Linear Systems. Lectures Notes in Electrical Engineering, vol. 266. Springer International Publisher, Heidelberg (2014)

    Google Scholar 

  16. Witczak, M., Witczak, P.: Efficient predictive fault-tolerant control for non-linear systems. In: Korbicz, J., Kowal, M. (eds.) Intelligent Systems in Technical and Medical Diagnostics. AISC, vol. 230, pp. 65–76. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  17. Witczak, M., Witczak, P., Korbicz, J., Aubrun, C.: Robust and efficient predictive ftc: application to wind turbines. In: Conference on Control and Fault-Tolerant Systems - SysTol 2013, Nice, France, pp. 371–376 (2013)

    Google Scholar 

  18. Witczak, P. Luzar, M., Witczak, M., Korbicz, J.: A robust fault-tolerant model predictive control for linear parameter-varying systems. In: Proceedings of Methods and Models in Automation and Robotics - MMAR, pp. 462–467 (2014)

    Google Scholar 

  19. Zemouche, A., Boutayeb, M., Bara, G.I.: Observer for a class of \(\text{ Lipschitz }\) systems with extension to \(\cal H_{\infty }\) performance analysis. Systems and Control Letters 57(1), 18–27 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Polycarpou, M.M., Prisini, T., Zhang, X.: Fault diagnosis of a class of nonlinear uncertain systems with lipschitz nonlinearities using adaptive estimation. Automatica 46(2), 290–299 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Witczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Witczak, P., Mrugalski, M., Patan, K., Witczak, M. (2015). A Neural-Network-Based Robust Observer for Simultaneous Unknown Input Decoupling and Fault Estimation. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2015. Lecture Notes in Computer Science(), vol 9094. Springer, Cham. https://doi.org/10.1007/978-3-319-19258-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19258-1_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19257-4

  • Online ISBN: 978-3-319-19258-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics