Advertisement

Monitoring Motor Fluctuations in Parkinson’s Disease Using a Waist-Worn Inertial Sensor

  • Carlos Pérez-LópezEmail author
  • Albert Samà
  • Daniel Rodríguez-Martín
  • Andreu Català
  • Joan Cabestany
  • Eva de Mingo
  • Alejandro Rodríguez-Molinero
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9094)

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disorder. First appreciable symptoms in PD are those related to an altered movement control. Current PD treatments temporally revert the symptoms, but they do not prevent disease’s progression. At the beginning of the treatment, the antiparkinsonian effect of the medication is very evident and symptoms may completely disappear for hours; however, as disease progresses, motor fluctuations appear. Collecting precise information on the temporal course of fluctuations is essential for tailoring an optimal therapy in PD patients and is one of the main parameters in clinical trials. This paper presents an algorithm for wearable devices to automatically detect patient’s motor fluctuations based on inertial sensors. The algorithm has been evaluated in 7 PD patients at their homes without supervision and performing their usual activities. Results are a mean sensitivity of 99.9% and a mean specificity of 99.9%.

Keywords

Inertial sensors Parkinson’s disease Motor fluctuations Ambulatory monitoring 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jankovic, J.: Parkinson’s disease: clinical features and diagnosis. J. Neurol. Neurosurg. Psychiatry 79(4), 368–376 (2008)CrossRefGoogle Scholar
  2. 2.
    Papapetropoulos, S.S.: Patient diaries as a clinical endpoint in Parkinson’s disease clinical trials. CNS Neurosci. Ther. 18(5), 380–387 (2012)CrossRefGoogle Scholar
  3. 3.
    Zwartjes, D., Heida, T., van Vugt, J., Geelen, J., Veltink, P.: Ambulatory Monitoring of Activities and Motor Symptoms in Parkinson’s Disease. IEEE Trans. Biomed. Eng. 57(11), 2778–2786 (2010)CrossRefGoogle Scholar
  4. 4.
    Salarian, A., Russmann, H., Wider, C., Burkhard, P.R., Vingerhoets, F.J.G., Aminian, K.: Quantification of tremor and bradykinesia in Parkinson’s disease using a novel ambulatory monitoring system. IEEE Trans. Biomed. Eng. 54(2), 313–322 (2007)CrossRefGoogle Scholar
  5. 5.
    Pastorino, M., Cancela, J., Arredondo, M.T., Pansera, M., Pastor-Sanz, L., Villagra, F., Pastor, M.A., Martin, J.A.: Assessment of bradykinesia in Parkinson’s disease patients through a multi-parametric system. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 1810–1813 (2011)Google Scholar
  6. 6.
    Cancela, J., Pansera, M., Arredondo, M.T., Estrada, J.J., Pastorino, M., Pastor-Sanz, L., Villalar, J.L.: A comprehensive motor symptom monitoring and management system: The bradykinesia case. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1008–1011 (2010)Google Scholar
  7. 7.
    Keijsers, N.L.W., Horstink, M.W.I.M., Gielen, S.C.A.M.: Ambulatory motor assessment in Parkinson’s disease. Mov. Disord. 21(1), 34–44 (2006)CrossRefGoogle Scholar
  8. 8.
    Patel, S., Lorincz, K., Hughes, R., Huggins, N., Growdon, J., Standaert, D., Akay, M., Dy, J., Welsh, M., Bonato, P., Member, S.: Monitoring Motor Fluctuations in Patients With Parkinson’s Disease Using Wearable Sensors. IEEE Trans. Inf. Technol. Biomed. 13(6), 864–873 (2009)CrossRefGoogle Scholar
  9. 9.
    Salarian, A., Russmann, H., Vingerhoets, F.J.G., Dehollain, C., Blanc, Y., Burkhard, P.R., Aminian, K.: Gait assessment in Parkinson’s disease: toward an ambulatory system for long-term monitoring. IEEE Trans. Biomed. Eng. 51(8), 1434–1443 (2004)CrossRefGoogle Scholar
  10. 10.
    Hoff, J.I., van der Meer, V., van Hilten, J.J.: Accuracy of Objective Ambulatory Accelerometry in Detecting Motor Complications in Patients With Parkinson Disease. Clin. Neuropharmacol., 27(2) (2004)Google Scholar
  11. 11.
    Salarian, A.: Ambulatory monitoring of motor functions in patients with parkinson´s disease using kinematic sensors. École polytechnique federale de Lausanne (2006)Google Scholar
  12. 12.
    Keijsers, N.L.W., Horstink, M.W.I.M., Gielen, S.C.A.M.: Automatic assessment of levodopa-induced dyskinesias in daily life by neural networks. Mov. Disord. 18(1), 70–80 (2003)CrossRefGoogle Scholar
  13. 13.
    Tsipouras, M.G., Tzallas, A.T., Rigas, G., Bougia, P., Fotiadis, D.I., Konitsiotis, S.: Automated Levodopa-induced dyskinesia assessment. In: 2010 Annual International Conference of the IEEE on the Engineering in Medicine and Biology Society (EMBC), pp. 2411–2414 (2010)Google Scholar
  14. 14.
    Stebbins, G.T., Goetz, C.G., Lang, A.E., Cubo, E.: Factor analysis of the motor section of the unified Parkinson’s disease rating scale during the off-state. Mov. Disord. 14(4), 585–589 (1999)CrossRefGoogle Scholar
  15. 15.
    Mera, T.O., Heldman, D.A., Espay, A.J., Payne, M., Giuffrida, J.P.: Feasibility of home-based automated Parkinson’s disease motor assessment. J. Neurosci. Methods 203(1), 152–156 (2012)CrossRefGoogle Scholar
  16. 16.
    Bloxham, C.C., Mindel, T.C., Frith, C.D.: Initiation and execution of predictable and unpredictable movements in parkinson’s disease. Brain 107(2), 371–384 (1984)CrossRefGoogle Scholar
  17. 17.
    Samà, A., Perez-Lopez, C., Romagosa, J., Rodriguez-Martin, D., Català, A., Cabestany, J., Perez-Martínez, D.A., Rodríguez-Molinero, A.: Dyskinesia and motor state detection in Parkinson’s Disease patients with a single movement sensor. In: 34th Annual International Conference of the IEEE on the Engineering in Medicine and Biology Society, EMBS 2008, pp. 1194–1197 (2012)Google Scholar
  18. 18.
    Rodriguez-Martin, D., Samà, A., Perez-Lopez, C., Català, A., Cabestany, J., Rodriguez-Molinero, A.: SVM-based posture identification with a single waist-located triaxial accelerometer. Expert Syst. Appl. 40(18), 7203–7211 (2013)CrossRefGoogle Scholar
  19. 19.
    Sama, A., Perez-Lopez, C., Romagosa, J., Rodriguez-Martin, D., Catala, A., Cabestany, J., Perez-Martinez, D.A., Rodriguez-Molinero, A.: Dyskinesia and motor state detection in Parkinson’s Disease patients with a single movement sensor. In: 2012 Annual International Conference of the IEEE on the Engineering in Medicine and Biology Society (EMBC), pp. 1194–1197 (2012)Google Scholar
  20. 20.
    Zijlstra, W., Hof, A.L.: Assessment of spatio-temporal gait parameters from trunk accelerations during human walking. Gait Posture 18(2), 1–10 (2003)CrossRefGoogle Scholar
  21. 21.
    Rodr’iguez-Molinero, A., Samà, A., Pérez-Mart’inez, A.D., Pérez López, C., Romagosa, J., Bayés, À., Sanz, P., Calopa, M., Gálvez-Barrón, C., de Mingo, E., Rodr’iguez Mart’in, D., Gonzalo, N., Formiga, F., Cabestany, J., Catalá, A.: Validation of a Portable Device for Mapping Motor and Gait Disturbances in Parkinson’s Disease. JMIR mHealth uHealth 3(1), e9 (2015)CrossRefGoogle Scholar
  22. 22.
    Vapnik, V.N.: The Nature of Statistical Learning Theory, Second. Springer-Verlag, New York (1995)CrossRefGoogle Scholar
  23. 23.
    C.A. Rodríguez-Molinero, A., Samà, A., Pérez-Martínez, D.A., Pérez-López, C., Romagosa, J., Bayés, A., Sanz, P., Calopa, M., Ruiz, J., Gálvez, C., de Mingo, E., Rodríguez-Martín, D., Gonzalo, N., Formiga, F., Cabestany, J.: Validation of a Portable Device for Mapping Motor and Gait Disturbances in Parkinson’s Disease. JMIR MHEALTH UHEALTH - PressGoogle Scholar
  24. 24.
    Rodríguez-Martín, D., Pérez-López, C., Samà, A., Cabestany, J., Català, A.: A Wearable Inertial Measurement Unit for Long-Term Monitoring in the Dependency Care Area. Sensors 13(10), 14079–14104 (2013)CrossRefGoogle Scholar
  25. 25.
    Cavanaugh, J.T., Ellis, T.D., Earhart, G.M., Ford, M.P., Foreman, K.B., Dibble, L.E.: Capturing Ambulatory Activity Decline in Parkinson Disease. J. Neurol. Phys. Ther. JNPT 36(2), 51 (2012)CrossRefGoogle Scholar
  26. 26.
    Rochester, L., Chastin, S.F.M., Lord, S., Baker, K., Burn, D.J.: Understanding the impact of deep brain stimulation on ambulatory activity in advanced Parkinson’s disease. J. Neurol. 259(6), 1081–1086 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Carlos Pérez-López
    • 1
    Email author
  • Albert Samà
    • 1
  • Daniel Rodríguez-Martín
    • 1
  • Andreu Català
    • 1
  • Joan Cabestany
    • 1
  • Eva de Mingo
    • 1
  • Alejandro Rodríguez-Molinero
    • 2
  1. 1.Technical Research Centre for Dependency Care and Autonomous Living (CETpD)Universitat Politècnica de Catalunya – BarcelonaTech (UPC)BarcelonaSpain
  2. 2.Clinical Research UnitFundación Sant Antoni Abat (Consorci Sanitari del Garraf)BarcelonaSpain

Personalised recommendations